

IBM PL/I for MVS & VM IBM

Compile-Time Messages and Codes
Release 1.1

 SC26-3229-02

IBM PL/I for MVS & VM IBM

Compile-Time Messages and Codes
Release 1.1

 SC26-3229-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page iv.

Third Edition (June 1998)

This edition applies to Version 1 Release 1.1 of IBM PL/I for MVS & VM (named IBM SAA AD/Cycle PL/I MVS & VM for Release
1.0), 5688-235, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you
are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department BWE/H3
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1964, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . iv
Trademarks . iv

About this book . v
Using Your Documentation . v
What Is New in PL/I for MVS & VM . vi
Syntax Notation . viii

Chapter 1. Compile-Time and Macro Preprocessor Messages 1
Format of Messages . 1

Symbols in Messages . 2
Alternative Forms of Messages . 2
Before Calling IBM . 3

Messages IEL0001-IEL0995 . 4
Messages IEL2233-IEL2274 . 102
Error and Restriction Numbers (0 to 946) for IEL0001I, IEL0230I, and

IEL0970I . 105
Compiler Return Codes . 114

Batched Compilation Return Codes . 114
Interlanguage Communication Return Codes 114

Chapter 2. PL/I TSO Prompter Messages 116
Format of Messages . 116

Symbols in Messages . 117
Before Calling IBM . 117

| Messages IKJ65001I-IKJ65089I . 117

Chapter 3. PL/I VM (DMS) Messages . 124
Format of Messages . 124

Symbols in Messages . 124
Before Calling IBM . 125

Messages DMSPLI001-DMSPLI251 . 126

Bibliography . 127
PL/I for MVS & VM Publications . 127
Language Environment for MVS & VM Publications 127
OS/390 Language Environment Publications 127
VisualAge PL/I Enterprise (OS/2 and Windows) 127
IBM Debug Tool Publication . 127

| VisualAge PL/I Millennium Language Extensions for MVS & VM Publications 127
Softcopy Publications . 127
Other Books You Might Need . 127

Index . 129

 Copyright IBM Corp. 1964, 1995 iii

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

AD/Cycle
BookManager
CICS
COBOL/370
IBM

Language Environment
MVS/ESA
OS/2
SAA
VM/ESA

iv Copyright IBM Corp. 1964, 1995

About this book

This publication lists all compile-time messages and codes from the PL/I for MVS &
VM Compiler. Most of these messages have information illustrating the detected
condition and suggesting appropriate corrective action. Error and restriction
numbers and compiler return codes are provided to further aid you in determining a
problem. Also included are messages and codes produced by the PL/I prompter,
and those produced by the compiler module interface when running under CMS.

Users of this book are those application programmers who code and compile PL/I
programs. This book is intended to help you find a resolution for the message or
code you received while performing one of the above tasks.

In general, in this book CMS refers to VM/ESA and MVS refers to MVS/ESA.

Using Your Documentation
The publications provided with PL/I for MVS & VM are designed to help you
program with PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with PL/I for
MVS & VM and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, such as the IBM Debug Tool, see
“Bibliography” on page 127.

 PL/I Information
Table 1. How to Use Publications You Receive with PL/I for MVS & VM

To... Use...

Understand warranty information Licensed Programming Specifications

Plan for, install, customize, and maintain PL/I Installation and Customization under MVS
Program Directory under VM

Understand compiler and run-time changes and
adapt programs to PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details
on compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference
Reference Summary

Diagnose compiler problems and report them to
IBM

Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment Information
Table 2 (Page 1 of 2). How to Use Publications You Receive with Language Environment

To... Use...

Evaluate Language Environment Fact Sheet
Concepts Guide

Understand warranty information Licensed Program Specifications

 Copyright IBM Corp. 1964, 1995 v

Table 2 (Page 2 of 2). How to Use Publications You Receive with Language Environment

To... Use...

Understand the Language Environment
program models and concepts

Concepts Guide
Programming Guide

Plan for, install, customize, and maintain
Language Environment

Installation and Customization under MVS
Program Directory under VM

Migrate applications to Language Environment Run-Time Migration Guide
Your language migration guide

Find syntax for run-time options and callable
services

Programming Reference

Develop your Language
Environment-conforming applications

Programming Guide and your language
programming guide

Find syntax for run-time options and callable
services

Programming Reference

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Communication Applications
Writing Interlanguage Applications

Debug your Language Environment-conforming
application and get details on run-time
messages

Debugging Guide and Run-Time Messages

Diagnose problems with Language
Environment

Debugging Guide and Run-Time Messages

Find information in the Language Environment
library quickly

Master Index

What Is New in PL/I for MVS & VM
PL/I for MVS & VM enables you to integrate your PL/I applications into Language
Environment for MVS & VM. In addition to PL/I's already impressive features, you
gain access to Language Environment's rich set of library routines and enhanced
interlanguage communication (ILC) with COBOL for MVS & VM, C/370, and C/C++

for MVS/ESA. Differences between OS PL/I and Language Environment's support
of PL/I for MVS & VM are described in PL/I for MVS & VM Compiler and Run-Time
Migration Guide.

PL/I for MVS & VM Release 1.1 provides the following enhancements:

| � Support for VisualAge PL/I Millennium Language Extensions for MVS & VM for
| transition to Year 2000

| � New compiler options, RESPECT, RULES, and WINDOW, to support century
| windowing solution provided by VisualAge PL/I Millennium Language
| Extensions for MVS & VM

� Language Environment support of the PL/I multitasking facility

� Language Environment compatibility support for the following OS PL/I features:

– OS PL/I PLICALLA entry support extended to OS PL/I applications that
have been recompiled with PL/I for MVS & VM

– OS PL/I PLICALLB entry support with some differences in handling storage

� Object and/or load module support for OS PL/I expanded to Version 1 Release
3.0-5.1 with some restrictions

� Support for OS PL/I load modules invoking PLISRTx

� Expanded support and rules for OS PL/I Shared Library

vi PL/I for MVS & VM Messages and Codes

� OS PL/I coexistence with Language Environment

� Enhanced SYSPRINT support

� OS PL/I-Assembler clarifications

� Compatibility for location of heap storage

� Help to relink your object and load modules with Language Environment

� Help to relink your OS PL/I-COBOL ILC load modules with Language
Environment

� Help to relink your OS PL/I load modules using PLISRTx with Language
Environment

� Help to relink your OS PL/I Shared Library

� Enhanced ILC support for PL/I and C/370

Release 1.0 provided the following functions:

� IBM Language Environment for MVS & VM support including:

– ILC support with COBOL for MVS & VM and C/370.

- Object code produced by PL/I for MVS & VM Version 1 Release 1

- Object code produced by all releases of OS PL/I Version 2 and Version
1 Release 5.1

- Object code produced by LE/370-conforming compilers (all releases)

- PL/I load modules can be fetched by COBOL/370 and C/370 load
modules

- Load modules from other LE/370 Version 1 Release 1 and Release 1.1
conforming languages. Some load module support for
non-LE/370-conforming languages See the PL/I for MVS & VM
Compiler and Run-Time Migration Guide for details.

- Object code from VS COBOL II Version 1 Release 3 and C/370
Version 1 and Version 2 as provided by each respective Language
Environment-conforming products)

| Note: PL/I for MVS & VM does not support ILC with OS/VS COBOL.

– Support for PL/I and C/370 ILC is enhanced.

- Pointer data type now supports the null value used by C/370 and
programs via the SYSNULL built-in function.

– Under VM, the source listings for PL/I compilations can now be directed to
the printer by modifying an IBM-supplied EXEC.

– CEESTART is the entry point for all environments (including CICS).

– Support for FETCH in CICS and VM.

– Procedure OPTIONS option FETCHABLE can be used to specify the
procedure that gets control within a fetched load module.

– Implicit LE/370 enclave is created if the PL/I load module containing a
MAIN procedure is fetched or is dynamically called.

– CEETDLI is supported in addition to PLITDLI, ASMTDLI, and EXEC DLI.

 About this book vii

– By default, only user-generated output is written to SYSPRINT. All run-time
generated messages are written to MSGFILE.

– Automatic storage can now be above the 16-megabyte line.

– All PL/I MVS & VM Version 1 Release 1 resident library routines are in a
LIBPACK, and packaged with LE/370. The transient routines remain
transient and are not packaged as part of the LIBPACK.

– At link-edit time, you have the option of getting math results that are
compatible with LE/370 or with OS PL/I.

� Support for DFP Version 3 system-determined blocksize.

� DATETIME and TIME return milliseconds in all environments, including VM and
CICS.

� VM terminal I/O is unblocked and immediate.

� ERROR conditions now get control of all system abends. The PL/I message is
issued only if there is no ERROR on-unit or if the ERROR on-unit does not
recover from the condition via a GOTO.

� Selected items from OS/2 PL/I are implemented to allow better coexistence
with PL/I Package/2.

– Limited support of OPTIONS(BYVALUE and BYADDR)

– Limited support of EXTERNAL(environment-name) allowing alternate
external name

– Limited support of OPTIONAL arguments/parameters

– Support for %PROCESS statement

– NOT and OR compiler options

� Installation enhancements are provided to ease product installation and
migration.

Note: You cannot use INSPECT for C/370 and PL/I or PLITEST with PL/I for MVS
& VM

 Syntax Notation
Special notation used in this book is as follows:

< Shift-out character

> Shift-in character

viii PL/I for MVS & VM Messages and Codes

Chapter 1. Compile-Time and Macro Preprocessor Messages

The messages and codes in this chapter are the ones produced while your
program is compiling. These messages are the compiler control messages,
preprocessor messages, and compiler messages.

In this chapter, the messages are listed in numeric order.

� Compiler control messages (numbers 0002 through 0049) are mainly
concerned with errors detected in the specification of compiler options in the
PROCESS statement.

� Preprocessor messages (number 0001, numbers 0050 through 0229, and
numbers 2233 through 2277) follow any listed output from the preprocessor,
and, if compilation follows immediately, before any listed output from the
compilation.

� Compiler messages (numbers 0230 through 0999) follow the source program
and any other listings produced by the compiler.

Format of Messages
Each message has a number of the form IELnnnnI. “IEL” indicates that the
message is a preprocessor or compile-time message and “nnnn” is the number of
the message. The final “I” indicates that no system operator action is required.
After “nnnnI,” most messages are followed by a severity code, either “I,” “W,”
“E,” “S” or “U.”

These codes indicate the following:

I An informational message calls attention to some aspect of the source
program that might assist the programmer.

W A warning message calls attention to a possible program error or to a
potential failure to achieve full optimization. It does not imply a syntactical
error in the source program. In addition to alerting the programmer,
warning messages can help make the program more efficient.

E An error message describes an error that the compiler corrected. The
correction is likely to be successful.

S A severe error message describes an error that the compiler attempts to
correct, but might not do so successfully. Frequently, the correction
consists of ignoring the incorrect section of the statement.

U An unrecoverable error message describes an error that cannot be
corrected by the compiler. Such errors, when discovered, normally force
termination of the compilation. They are usually caused by a compiler,
system, or setup error rather than by an error in the source program.

Except for compiler control messages, the compiler prints the messages in groups
according to these severity levels.

The compiler FLAG option suppresses the listing of messages in the compiler
listing. You can find a description of the FLAG option in the PL/I for MVS & VM
Programming Guide.

 Copyright IBM Corp. 1964, 1995 1

Symbols in Messages
Many of the messages reproduced in this publication contain symbols indicating
where the compiler inserts information when it prints the message. The symbols
used are:

D An identifier used in the program

N A decimal integer

P Compiler phase

T Text: up to 20 characters derived from the source program

T1 Text: up to 20 characters derived from the source program, being the first text
insert in the message

T2 Text: up to 20 characters derived from the source program, being the second
text insert in the message

You might also see these symbols:

< Shift-out character

> Shift-in character

Alternative Forms of Messages
Most messages are shown with their short form followed by their long form. In
cases where the long and short messages are identical, the message appears only
once. The format of compiler messages is controlled by the LMESSAGE and
SMESSAGE compiler options.

The compiler might produce some messages with optional phrases. If a message
has an optional phrase, it is listed in this publication with the phrases enclosed in
square brackets. For example, message IEL0399I can print as:

SEMICOLON ASSUMED.

or as:

SEMICOLON ASSUMED AFTER T.

This message appears in this publication as:

IELð399I E SEMICOLON ASSUMED [AFTER T].

A message can have other phrases included, such as:

PROLOGUE CODE

STATEMENT IGNORED

RESULTS OF PROLOGUE UNDEFINED

TO D

The term PROLOGUE refers to the instructions generated by the compiler for a
PROCEDURE or BEGIN statement. These instructions perform the housekeeping
that is required on entry to a procedure or begin-block. Messages with references
to the prologue indicate that the compiler detected the condition resulting in the
message while generating the prologue code.

Conditions detected while generating the prologue code can include items such as
the misuse of the INITIAL attribute or of parameters. Consequently, the presence
of a reference to the prologue indicates that the error is not contained in the

2 PL/I for MVS & VM Messages and Codes

PROCEDURE or BEGIN statement itself, but in some other statement, such as a
DECLARE statement, that follows the indicated statement.

Before Calling IBM . . .
Before you call IBM for programming support for a compile-time error, recompile
the program to get the following:

1. A listing of the source program

2. The job stream (source program and job control statements) in machine
readable form

The PL/I for MVS & VM Diagnosis Guide gives the requirements for problem
determination and APAR submission.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 3

 IEL0001I U � IEL0011I

 Messages IEL0001-IEL0995

IEL0001I U PROCESSOR ERROR NUMBER N
DURING PHASE P.

Explanation: An error has occurred during
preprocessing. Processing has been terminated. This
error is due to a fault in the preprocessor, not the
source program. A detailed explanation of error number
N is given in “Error and Restriction Numbers (0 to 946)
for IEL0001I, IEL0230I, and IEL0970I” on page 105.

Programmer Response: Rerun the job, and if the
problem recurs, call IBM for programming support.
Before calling IBM, refer to the introduction to this part
of the publication for details of information that IBM will
need in order to diagnose the problem.

IEL0002I U END-OF-FILE ENCOUNTERED ON INPUT
FILE DURING COMPILER
INITIALIZATION.

Example:

// EXEC IEL1AA

\PROCESS;

/\

Explanation: The compiler has encountered the end
of file for the source program before reading a complete
PL/I statement.

Programmer Response: Ensure that the source
program immediately follows the EXEC IEL1AA
statement. If a PL/I comment is the first statement in
the source program, ensure that the “/*” is not in the
first two positions of the record (columns 1 and 2) and
are thereby assumed to be the job control end-of file
delimiter. If the first statement in the source program is
a PROCESS statement, ensure that the terminating
semicolon is not in positions 73-80 of the first record.

IEL0003I THE FOLLOWING STRING IS NOT
RECOGNIZED AS A VALID OPTION
KEYWORD AND IS IGNORED - T.

Example:

\ PROCESS ATRIBUTES;

 |________|

 T

Explanation: A character string in the PROCESS
statement cannot be recognized as a valid keyword. In
the above example, ATTRIBUTES is misspelled.

IEL0004I RIGHT PARENTHESIS MISSING IN
SPECIFICATION OF FOLLOWING
OPTION, BUT OPTION IS ACCEPTED - T.

Example:

\PROCESS FLAG(I;

IEL0005I THE SPECIFICATION OF THE
FOLLOWING OPTION CONTAINS
INVALID SYNTAX, DEFAULT ASSUMED
FOR T.

Example:

\ PROCESS SIZE)8ðK)...;

 |___|

 T

IEL0006I THE FOLLOWING OPTION IS DELETED,
DEFAULT ASSUMED FOR T.

Explanation: The compiler, while processing the
PROCESS statement, has encountered an option
keyword that was deleted from the compiler at
installation time. The default assumed for the option is
the default specified for the option at installation time.

Programmer Response: If the option is essential,
arrange to have the option restored to the compiler
when the system is next generated or use the
CONTROL option to restore the option temporarily.

IEL0009I THE FOLLOWING SUB-FIELD OF THE
'TERMINAL' OPTION IS INVALID AND
IGNORED - T.

Example:

\ PROCESS...TERMINAL(CODE,ESD,STORAGE);

In this example, CODE is the invalid subfield.

Explanation: The stated subfield is not recognized,
because of misspelling, or because of the use of an
invalid subfield. In each case, the stated subfield is
ignored.

IEL0010I THE FOLLOWING SUB-FIELD OF THE
'TERMINAL' OPTION IS DELETED,
DEFAULT ASSUMED FOR T.

Explanation: The option stated in the subfield has
been deleted at installation time. The default value of
the subfield is assumed and might or might not be the
option requested.

IEL0011I SOURCE OR SEQUENCE MARGINS
INCORRECTLY SPECIFIED. DEFAULTS
ASSUMED FOR 'MARGINS' OR
'SEQUENCE'.

Example:

\ PROCESS MARGINS(72,2,1);

Explanation: The left-hand margin position is to the
right of the right-hand margin position. The default
values assumed will be 2 and 72. The carriage control
character position, if specified, is ignored.

4 PL/I for MVS & VM Messages and Codes

 IEL0012I � IEL0026I

IEL0012I CARRIAGE CONTROL CHARACTER
OVERLAPS SEQUENCE FIELD OR
SOURCE MARGINS. CONTROL
CHARACTER IGNORED.

Example:

1. \PROCESS MAR(5,72,73) SEQ(73,8ð);

2. \PROCESS MAR(5,72,1ð);

Explanation: The carriage control character position, if
used, must be outside the margins or sequence limits.
The values of 5 and 72 are used for the margins, and
the carriage control character position is ignored.

IEL0013I ARGUMENT NOT WITHIN PERMITTED
RANGE. DEFAULT ASSUMED FOR
OPTIONS -- MARGINS DEFAULT
ASSUMED FOR OPTIONS -- LINECOUNT

Example:

1. \PROCESS MARGINS(2,1ð3,1)...;

2. \PROCESS LINECOUNT(ð)...;

IEL0014I UNMATCHED LEFT PARENTHESIS IN
COMPILER OPTIONS SPECIFICATION.
SUBSEQUENT OPTIONS IGNORED.

Example:

\PROCESS LINECOUNT(5ð;

IEL0015I SPECIFIED 'SIZE' OPTION IS LESS
THAN MINIMUM REQUIRED BY
COMPILER. DEFAULT ASSUMED.

Example:

\PROCESS SIZE(4ðK)...;

Explanation: The compiler requires at least 256K
bytes of main storage.

IEL0016I SIZE SPECIFICATION TOO BIG.
SIZE(MAX) ASSUMED.

Example:

\PROCESS SIZE(1ðððððK);

Explanation: The value specified in the compiler
option SIZE exceeded your storage resources. The
maximum amount of storage available to you will be
used for the compilation.

IEL0017I 'NOTERMINAL' OPTION ASSUMED IN
BATCH MODE.

Example:

EXEC PGM = IEL1AA,PARM = 'TERM(X)'

Explanation: The compiler cannot send output to a
terminal when running in batch mode, so the
TERMINAL option should not be specified.

IEL0018I NAME FIELD TOO LONG. 'NAME'
OPTION IGNORED.

Explanation: The total number of nonblank characters
appearing in the name field of the specified NAME
option is too large. Correct the specification and
resubmit the job.

IEL0019I 'SIZE' OPTION IGNORED. VALUE IN
FIRST MEMBER OF BATCH ASSUMED.

Explanation: It is not possible to alter the amount of
main storage to be used by the compiler for the
compilation of the second or subsequent external
procedures in a batched compilation.

IEL0023I W NONBLANK CHARACTERS FOLLOWING
SEMICOLON IGNORED.

Example:

\ PROCESS A,X; P;PROC OPTIONS(MAIN);

Explanation: Nonblank characters have been detected
following the semicolon in the options list. Any
comments and the first statement in the external
procedure must follow a PROCESS statement on the
following card (or line).

IEL0024I U SPILL FILE NEEDED BUT DD
STATEMENT INCORRECT.
COMPILATION TERMINATED.

Explanation: If the spill file cannot be opened,
message IEL0026I or message IEL0031I will be
produced. If the spill file is needed, message IEL0024I
is produced. The compilation can be completed without
needing a spill file.

IEL0025I INVALID SYNTAX IN LAST OPTION OF
'PARM' FIELD. PROCESSING OF
'PARM' OPTIONS TERMINATED.

Example:

EXEC PGM = IELOAA,PARM = 'TA(KQ'

Explanation: In the above example, the right
parenthesis has been omitted.

IEL0026I THE COMPILER SPILL FILE IS NOT
DIRECT ACCESS. COMPILATION WILL
TERMINATE IF SPILL FILE NEEDED.

Example:

//SYSUT1 DD SYSOUT = A

Explanation: Compilation will be terminated if the spill
file is needed and it is not on a direct access storage
device. Compilation will not be terminated if the spill file
is not needed.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 5

 IEL0027I U � IEL0039I S

IEL0027I U INCORRECT SPECIFICATION OF THE
'CONTROL' OPTION. COMPILATION
TERMINATED.

Explanation: Either the CONTROL option has been
specified syntactically incorrect or the wrong password
has been supplied.

IEL0028I DELIMITER AT START OF STRING 'T'
IS INVALID AND IS IGNORED.

Example:

\ PROCESS 'FLAG(S)';

the quote (') characters are invalid.

Example:

\ PROCESS (FLAG(S));

the first left parenthesis and the last right parenthesis
are invalid.

IEL0029I U I/O ERROR DURING BLDL.
COMPILATION TERMINATED.

Explanation: The compiler issues a BLDL macro
instruction in order to record where the phases are
located on direct-access storage. An I/O error has
occurred while the expanded macro instructions are
being run.

Programmer Response: Rerun the job and, if the
error recurs, call IBM for programming support. Before
calling IBM, refer to the introduction to this part of the
publication for details of information that IBM will need
in order to diagnose the problem.

IEL0030I U THE COMPILER INPUT FILE CANNOT BE
OPENED.

Explanation: The compiler input file SYSCIN or
SYSIN cannot be opened, possibly because no DD card
for the file has been provided. Compilation is
terminated.

IEL0031I THE COMPILER SPILL FILE CANNOT BE
OPENED. COMPILATION WILL
TERMINATE IF SPILL FILE NEEDED.

Explanation: The compiler spill file SYSUT1 cannot
be opened, possibly because no DD card has been
provided. Compilation will not be terminated if the spill
file is not needed.

IEL0032I S THE COMPILER PUNCH FILE CANNOT
BE OPENED.

Explanation: The DECK or MDECK option has been
requested but SYSPUNCH cannot be opened, possibly
because no DD card has been provided. Compilation
continues with no punched output.

IEL0033I S THE COMPILER LOAD FILE CANNOT BE
OPENED.

Explanation: The OBJECT option has been specified
but SYSLIN cannot be opened, possibly because no DD
card has been provided. The NOOBJECT option is
assumed and compilation continues.

IEL0034I U INSUFFICIENT MAIN STORAGE
AVAILABLE. COMPILATION
TERMINATED.

Explanation: The compiler has insufficient main
storage to complete initialization. The region is below
the minimum required, or the buffers allocated to the
compiler input/print/ load/punch files might be too big.

Programmer Response: Retry with larger region.

IEL0035I 'NUMBER' OPTION BUT NO
'SEQUENCE'. DEFAULT SEQUENCE
ASSUMED.

Example:

\PROCESS NUM NSEQ;

Explanation: The NUMBER option derives a line
number from the sequence number in the position
specified in the SEQUENCE option. If this position is
not specified, the following position is assumed:

F-format records: last eight columns
U-format records: first eight columns
V-format records: first eight columns

IEL0036I THE FOLLOWING OPTION IS NOT
SUPPORTED AND IS IGNORED - T.

Explanation: A valid PL/I option keyword has been
specified, but is not supported by this compiler.

IEL0037I S INVALID BLOCKSIZE FOR PUNCH FILE.
80 ASSUMED.

Explanation: The block size specified for the punch
file (SYSPUNCH) is not a multiple of 80.

IEL0038I S INVALID BLOCKSIZE FOR LOAD FILE.
80 ASSUMED.

Explanation: The block size specified for the load file
(SYSLIN) is not a multiple of 80.

IEL0039I S INVALID FORMAT SPECIFICATION FOR
INPUT FILE. U(100) ASSUMED.

Explanation: The record format specified for the input
file (SYSCIN or SYSIN) is not supported by the
compiler.

6 PL/I for MVS & VM Messages and Codes

 IEL0040I � IEL0050I E

IEL0040I 'NOT' AND 'OR' OPTIONS CONFLICT.
BOTH OPTIONS ARE IGNORED.

Explanation: The strings specified in the subfields of
the NOT compiler option and the OR compiler option
cannot contain any of the same characters.

Programmer Response: Change either the NOT
option subfield, or the OR option subfield, or both, so
that none of the characters in the subfield strings are
the same. If these options are not explicitly specified by
your source program, use the OPTIONS compiler option
to see which characters are in conflict.

IEL0041I SEQUENCE FIELD OVERLAPS SOURCE
MARGINS. DEFAULT SEQUENCE
ASSUMED.

Example:

\PROCESS MAR(1ð,72) SEQ(1ð,18);

Explanation: The source margins need not overlap
the position of the sequence number. If they do, the
following position for the sequence number is assumed:

F-format records: last eight columns
U-format records: first eight columns
V-format records: first eight columns

IEL0042I SOURCE MARGINS OVERLAP
SEQUENCE FIELD. 'SEQUENCE' AND
'NUMBER' OPTIONS IGNORED.

Example:

\PROCESS MAR(2,8ð) SEQ(1,8);

Explanation: The assumed position of the sequence
number, as described in the explanation for message
IEL0041I, has failed to prevent overlapping of the
sequence number by the source margins. The
SEQUENCE option is ignored. The NUMBER and
GONUMBER options will be replaced by the STMT and
GOSTMT options if these are specified.

IEL0043I 'COUNT' OPTION USED WITH
'NOGOSTMT' OR 'NOGONUMBER'
OPTION. 'COUNT' OPTION IGNORED.

Example:

\PROCESS CT NUM NGN;

Explanation: Statement frequency counting is
performed by recording the numbers of statements
involved in all branches. With the exception of points of
interrupt, all statements that might be involved in
branches can be recognized at compile-time.

When a statement number table is not available at run
time (because NOGOSTMT or NOGONUMBER are in
effect) it is impossible to determine the statement
number at a point of interrupt. If return is not made to
the point of interrupt, the count values will be incorrect.

If NOGOSTMT or NOGONUMBER are not specified
explicitly, GOSTMT or GONUMBER (depending on
whether STMT or NUMBER have been specified) will
be implied by COUNT.

IEL0045I U I/O ERROR 'T'.

Explanation: The insert 'T' is the information
pertinent to the I/O error that is provided by the
SYNADAF macro instruction. (Details can be found in
the OS Data Management Macros book that applies to
your system.) Compilation is terminated. If the I/O
error is on the print file, 'PRINT FILE ERROR' will
appear on the operator console.

IEL0046I INVALID OPTION SUBFIELD SPECIFIED.
SUBFIELD IGNORED IN OPTION T.

Example:

\PROCESS XREF(LONG);

Explanation: In the example, LONG is not a valid
suboption for the XREF option.

IEL0047I U COMPILER INITIALIZATION ERROR.
COMPILATION TERMINATED.

Explanation: An error has occurred in the compiler
initialization phase.

IEL0048I PRINT FILE CANNOT BE OPENED.

Explanation: The attempt to OPEN the print file has
failed, possibly because no DD card or FILEDEF has
been provided. Compilation is terminated.

IEL0049I E OSDECK OPTION IS NO LONGER VALID.
IT HAS BEEN REPLACED BY
'SYSTEM(MVS)'.

Explanation: The OSDECK compile-time option is no
longer supported. Its function has been replaced by the
SYSTEM(MVS) compile-time option. Refer to the PL/I
for MVS & VM Programming Guide for a description of
the SYSTEM compile-time option.

IEL0050I E IDENTIFIER BEGINNING T EXCEEDS N
CHARACTERS.

PREPROCESSOR RESTRICTION.
IDENTIFIER BEGINNING T IS TOO
LONG. TRUNCATED TO FIRST N
CHARACTERS.

Example:

%INCLUDE DECLARATIONS;

%INCLUDE X(DECLARATIONS);

Explanation: The maximum possible length for an
identifier in a %INCLUDE statement is 8 characters.
Therefore in the above example, the identifier
DECLARATIONS is truncated to DECLARAT.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 7

 IEL0051I S � IEL0058I S

IEL0051I S NESTING LEVEL FOR '%INCLUDE'
STATEMENT EXCEEDS N.

MORE THAN N LEVELS OF NESTING
FOR '%INCLUDE' STATEMENT.
STATEMENT IGNORED. RERUN WITH
'MACRO' OPTION.

Example:

 %INCLUDE A;

in A: %INCLUDE B;

in B: %INCLUDE C;

(and so on, to a depth greater than 8).

Explanation: %INCLUDE statements cannot be
nested with more than eight levels when using the
INCLUDE compile-time option.

Programmer Response: The preprocessor, which has
no limits on the depth of nesting, should be used by
specifying the MACRO compiler option instead of the
INCLUDE compile-time option.

IEL0052I S '%INCLUDE' MEMBER T NOT FOUND.

'%INCLUDE' MEMBER T NOT FOUND.
MEMBER IGNORED.

Example:

%INCLUDE X,Y;

Explanation: If X cannot be found in the SYSLIB data
set, the member is ignored and processing continues
with Y.

IEL0053I S I/O ERROR READING MEMBER T.

I/O ERROR READING MEMBER T.
PROCESSING OF MEMBER
TERMINATED.

Example:

%INCLUDE X,Y;

Explanation: If an I/O error is encountered while
including X, processing of X is terminated and an
attempt is made to include Y.

Programmer Response: Rerun the job. If the error
recurs, call IBM for programming support. Before
calling IBM, refer to the introduction to this part of the
publication for details of information that IBM will need
in order to diagnose the problem.

IEL0054I S INVALID TEXT BEGINNING T IGNORED.

INVALID TEXT BEGINNING T IN
'%INCLUDE' STATEMENT.
STATEMENT IGNORED.

Example:

%INCLUDE A\B;

Explanation: The syntax of the %INCLUDE statement
is incorrect. In the example shown, an identifier is
expected.

IEL0055I W '%INCLUDE' FILE D. T ASSUMED.

SEQUENCE POSITIONS NOT SPECIFIED
FOR '%INCLUDE' FILE D. T ASSUMED

Explanation: This message is printed when the record
format of the included data set differs from that of
SYSIN, no sequence values for this record format were
specified at installation time, and the NUMBER
compile-time option applies.

Programmer Response: If the fix-up is unsatisfactory,
change the compile-time default options FSEQUEN or
VSEQUEN.

IEL0056I W INVALID CARRIAGE CONTROL
POSITION IGNORED FOR '%INCLUDE'
MEMBER D.

CARRIAGE CONTROL POSITION FOR
'%INCLUDE' MEMBER D IS WITHIN
SOURCE MARGINS OR SEQUENCE
FIELD. IT IS IGNORED.

Explanation: The carriage control position specified in
the MARGINS options must lie outside the margins and
outside any sequence field.

IEL0057I S SEQUENCE AND MARGINS OVERLAP
FOR D. T ASSUMED.

SEQUENCE AND MARGINS FIELDS
OVERLAP FOR '%INCLUDE' FILE D. T
ASSUMED.

Explanation: The MARGINS compile-time option is
modified if it overlaps the sequence field.

Programmer Response: If the fix-up is unsatisfactory,
either or both of the following compile-time options will
need to be modified: MARGINS, SEQUENCE.

IEL0058I S NO 'DD' STATEMENT FOR MEMBER T.

MISSING 'DD' STATEMENT FOR
'%INCLUDE' MEMBER T. MEMBER
IGNORED.

Example:

%INCLUDE P(MEMBER),DECLS;

Explanation: A DD statement for library P in the
example shown must be present. If it is not present,
this message is issued and the preprocessor proceeds
to the next specification, which is DECLS.

Programmer Response: Provide a DD statement with
a ddname P with the JCL statements used to perform
the compilation.

8 PL/I for MVS & VM Messages and Codes

 IEL0059I S � IEL0070I S

IEL0059I S I/O ERROR SEARCHING FOR MEMBER
T.

I/O ERROR SEARCHING FOR MEMBER
T. MEMBER IGNORED.

Example:

%INCLUDE X;

Explanation: In the example shown, an I/O error has
occurred during an attempt to find member X.

Programmer Response: If the error persists, call IBM
for programming support.

IEL0060I S RECORD LENGTH GREATER THAN N
FOR MEMBER T.

LOGICAL RECORD LENGTH GREATER
THAN N FOR MEMBER T. PROCESSING
OF MEMBER TERMINATED.

Explanation: The maximum allowed logical record
length is 100 for F-format data sets and 104 for
V-format data sets. For V-format data sets, no
message is issued until a record longer than 104 bytes
is actually encountered.

Programmer Response: Recreate the data set using
allowed logical record length.

IEL0061I E DEFAULT RECORD LENGTH OR BLOCK
SIZE ASSUMED FOR MEMBER T.

LOGICAL RECORD LENGTH OR BLOCK
SIZE NOT SPECIFIED FOR '%INCLUDE'
MEMBER T. DEFAULT ASSUMED.

Explanation: If either or both the logical length and
the block size are not specified, the following
assumptions are made. For F-format data sets, if
neither block size nor record length are specified, a
block size of 80 and record length of 400 are assumed;
if only one of the two is specified, the value specified is
assumed for both. For V-format and U-format data
sets, the maximum practical block size (4260 bytes) is
assumed.

Programmer Response: Specify LRECL and
BLKSIZE in the DCB parameter in the DD statement for
the data set.

IEL0065I E 'RETURNS' ATTRIBUTE ON D
IGNORED.

'RETURNS' ATTRIBUTE ON BUILTIN
FUNCTION D IGNORED.

Example:

%DECLARE SUBSTR BUILTIN RETURNS(CHAR);

Explanation: Data type returned by a built-in function
is determined by the language rules.

IEL0066I E 'ENTRY' ATTRIBUTE ON D IGNORED.

'ENTRY' ATTRIBUTE ON BUILTIN
FUNCTION D IGNORED.

Example:

%DECLARE INDEX BUILTIN ENTRY;

Explanation: The BUILTIN attribute implies the
ENTRY attribute.

IEL0067I S D INVALID BUILTIN FUNCTION NAME.

D IS NOT VALID BUILTIN FUNCTION
NAME. REFERENCE WILL END
PROCESSING.

Example:

%DECLARE HARRIET BUILTIN;

Explanation: Specify only allowed built-in function
names for the preprocessor.

IEL0068I E DESCRIPTOR LIST AFTER 'ENTRY'
IGNORED.

PARAMETER DESCRIPTOR LIST ON
'ENTRY' ATTRIBUTE IGNORED.

Example:

%DECLARE P ENTRY(CHAR,FIXED);

should be

%DECLARE P ENTRY;

Explanation: The arguments are always converted to
the types specified by the PROCEDURE statement.

IEL0069I E 'RETURNS' ATTRIBUTE IGNORED.

'RETURNS' ATTRIBUTE IN 'DECLARE'
STATEMENT IGNORED.

Example:

%DECLARE P ENTRY RETURNS(FIXED);

should be

%DECLARE P ENTRY;

Explanation: The attribute of the value returned by a
compile-time procedure is determined by the procedure
statement.

IEL0070I S END OF SOURCE TEXT IN STRING.

END OF SOURCE TEXT IN STRING.
QUOTE ASSUMED BEFORE END OF
SOURCE TEXT.

Explanation: End of source text found while scanning
for a closing quotation mark for a character or graphic
string. Check that all quotation marks are paired.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 9

 IEL0071I S � IEL0082I E

IEL0071I S NO DELIMITER ON REPLACEMENT
VALUE STRING.

REPLACEMENT VALUE CONTAINS NO
END OF STRING DELIMITER.
DELIMITER ASSUMED AT END OF
STRING.

Explanation: An end-of-string delimiter has not been
found in a replacement value.

IEL0072I E INVALID CHARACTER IN BIT STRING.

INVALID CHARACTER IN BIT STRING.
PROCESSED AS CHARACTER STRING.

IEL0073I S END OF SOURCE TEXT IN COMMENT.

END OF SOURCE TEXT IN COMMENT.
COMMENT DELIMITER ASSUMED AT
END OF SOURCE TEXT.

Explanation: The end of the source text has been
encountered while scanning for an end-of-comment
delimiter.

IEL0074I E NO COMMENT DELIMITER IN
REPLACEMENT VALUE.

REPLACEMENT VALUE CONTAINS NO
END OF COMMENT DELIMITER.
COMMENT DELIMITER ASSUMED AT
END OF REPLACEMENT VALUE.

Explanation: An end-of-comment delimiter cannot be
found in a replacement value.

IEL0075I E INVALID CHARACTER REPLACED BY
BLANK.

Explanation: An invalid character has been found in
the source text.

IEL0076I U BLOCKSIZE FOR '%INCLUDE' D
EXCEEDS 400.

BLOCKSIZE OF '%INCLUDE' D
EXCEEDS THE DEFAULT MAXIMUM OF
400 ALLOWED WITH THIS SIZE OPTION.
PROCESSING TERMINATED.

Explanation: The INCLUDE date set block size can
never exceed the spill fill record size, and with small
SIZE compile-time option values the maximum is 400.
The point at which a block size greater than 400 can be
used depends on the storage allocation performed at
compiler initialization time.

Programmer Response: Use a large SIZE
compile-time option value, or recreate the INCLUDE
data set with a smaller block size.

IEL0077I E CONFLICTING USE OF D.

USE OF D IN PROCEDURE ENDING AT
THIS LINE CONFLICTS WITH PREVIOUS
USE. REFERENCE WILL END
PROCESSING.

Example:

%DCL E ENTRY;

%P: PROCEDURE RETURNS(CHAR);

E = 3;

%END;

Explanation: An identifier has been used but not
declared in a compiler-time procedure. The use
conflicts with a use or declaration outside the
procedure.

IEL0078I E '%' IN LABEL LIST IGNORED.

Example:

% LABEL4: % IF C1 = C2 etc.

Explanation: In the above statement the second “%”
is ignored.

IEL0079I E NO LABEL BEFORE COLON.

NO LABEL BEFORE COLON. COLON
IGNORED.

Example:

%: A = B;

Programmer Response: Insert label or remove colon.

IEL0080I S INVALID TEXT IGNORED FROM T TO
SEMICOLON.

Example:

% GOTOLABEL 2; should be % GOTO LABEL2;

IEL0081I E CONFLICTING USE OF D.

CONFLICTING USE OF IDENTIFIER D AS
LABEL. REFERENCE WILL END
PROCESSING.

Example:

%DCL (A,B,C) CHAR;

%A: B = C;

Explanation: No system action is taken unless a
statement which references the identifier is detected.

IEL0082I E MULTIPLE USE OF D AS LABEL.

D USED AS LABEL MORE THAN ONCE.
REFERENCE WILL END PROCESSING.

Example:

%L;A = 1;

%L;A = 2;

10 PL/I for MVS & VM Messages and Codes

 IEL0083I W � IEL0094I E

Explanation: No system action is taken unless a
statement which references the multiply defined label is
detected.

IEL0083I W LABELS ON DECLARE STATEMENT.

LABELS ON 'DECLARE' STATEMENT
IGNORED.

Example:

% LABEL1: DECLARE J FIXED;

IEL0084I S CONFLICTING USE OF D.

USE OF D CONFLICTS WITH PREVIOUS
USE AS LABEL.

Example:

%L:;

%L = 2;

IEL0085I E NO ATTRIBUTE DECLARED FOR D.

NO ATTRIBUTE DECLARED FOR
PARAMETER D IN PROCEDURE ENDING
AT THIS LINE. CHARACTER ASSUMED.

Example:

%PROC1: PROC (P1,P2,P3) RETURNS (CHAR);

DCL (P1, P2) FIXED;

%END PROC1;

IEL0086I E LABEL D IS UNDEFINED.

LABEL D IS UNDEFINED. REFERENCE
WILL END PROCESSING.

Explanation: No system action is taken unless a
%GOTO statement that references the undefined label
is executed. Check all references to the label, or define
it.

IEL0087I E END OF SOURCE TEXT IN PROGRAM.

END OF SOURCE TEXT BEFORE
LOGICAL END OF PROGRAM. '%END'
STATEMENT ASSUMED.

Explanation: Check that each %PROCEDURE and
%DO statement is matched with a %END statement.

IEL0088I E D IS UNDEFINED IN PROCEDURE.

LABEL D IS UNDEFINED IN
PROCEDURE ENDING AT THIS LINE.
REFERENCE WILL END PROCESSING.

Explanation: A label must be defined within the
procedure as transfers out of procedures are not
allowed.

IEL0089I E SEMICOLON AFTER 'IF' EXPRESSION.

SEMICOLON TERMINATES 'IF'
EXPRESSION. SEMICOLON IGNORED.

Example:

%IF P1 = P2;

%THEN C1 = C2;

IEL0090I S 'IF' STATEMENT IGNORED.

'IF' EXPRESSION NOT FOLLOWED BY
'%' OR 'THEN'. 'IF' STATEMENT
IGNORED.

Example:

%IF C1 = C2 GOTO L1;

IEL0091I E NO '%' BEFORE 'THEN'.

MISSING '%' ASSUMED BEFORE
'THEN' IN '%IF' STATEMENT.

Example:

% IF C1 = C2 THEN;

IEL0092I E NO 'THEN' AFTER '%'.

MISSING 'THEN' ASSUMED AFTER '%'
IN '%IF' STATEMENT.

Example:

%IF C1 = C2

%C2 = C3;

IEL0093I E INVALID STATEMENT AFTER '%THEN'
or '%ELSE'.

STATEMENT AFTER '%THEN' OR
'%ELSE' NOT A PREPROCESSOR
STATEMENT. '%' ASSUMED BEFORE
IT.

Example:

% IF C1 = C2 % THEN C1 = C3;

is incorrect.

Explanation: If the statement in question is not a
preprocessor statement, it should be inside a
preprocessor do-group.

IEL0094I E MISSING 'THEN' ASSUMED.

MISSING 'THEN' ASSUMED IN 'IF'
STATEMENT.

Example:

%P: PROC RETURNS (FIXED);

IF I = 1 GOTO L;

...

%END;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 11

 IEL0095I E � IEL0103I E

IEL0095I E INVALID '%' IGNORED.

INVALID '%' IN PREPROCESSOR
PROCEDURE IGNORED.

Example:

% PROC1: PROCEDURE RETURNS(CHARACTER);

% DCL A FIXED;

%END;

Explanation: Statements within preprocessor
procedures cannot be preceded by “%.”

IEL0096I W LABELS ON 'ELSE' IGNORED.

Example:

%IF A = B %THEN %;

% LABEL3: ELSE %;

IEL0097I E NULL STATEMENT ASSUMED.

NO STATEMENT AFTER 'THEN' OR
'ELSE'. NULL STATEMENT ASSUMED.

Example:

% IF I = 1 % THEN % ELSE%;

IEL0098I E NO 'IF' BEFORE 'ELSE'

NO 'IF' BEFORE 'ELSE'. 'ELSE'
IGNORED.

Explanation: An ELSE clause has been found which
is not part of an IF statement.

IEL0099I U BLOCKSIZE FOR '%INCLUDE' D
EXCEEDS TEXT PAGE SIZE.

BLOCKSIZE OF '%INCLUDE' D
EXCEEDS THE TEXT PAGE SIZE
ALLOWED WITH THIS SIZE OPTION.
PROCESSING TERMINATED.

Explanation: The text page size depends on the SIZE
compile-time option specified for the compilation. The
block size of an INCLUDE data set cannot exceed this.

Programmer Response: Specify a large enough SIZE
value to ensure that text pages are at least as big as
INCLUDE data set blocks OR recreate INCLUDE data
set with smaller blocking factor, using a utility (for
example, IEBGENER).

Text page size depends upon the amount of storage
available and the type of direct access device used.
For more information, see the PL/I for MVS & VM
Programming Guide.

IEL0100I E DUMMY LABEL ASSUMED ON
STATEMENT.

NO LABEL ON '%PROCEDURE'
STATEMENT. DUMMY LABEL
ASSUMED.

Example:

%PROC RETURNS(CHAR);

Explanation: A %PROCEDURE statement should
have a label.

Programmer Response: Insert a label on the
PROCEDURE statement.

IEL0101I U MORE THAN N PROCEDURES.

PREPROCESSOR RESTRICTION. MORE
THAN N PREPROCESSOR
PROCEDURES DEFINED IN A
COMPILATION. PROCESSING
TERMINATED.

Programmer Response: Reduce the number of
preprocessor procedures to within the limit given by N.

IEL0102I E D PREVIOUSLY DEFINED.

ENTRY NAME D PREVIOUSLY DEFINED.
REFERENCE WILL END PROCESSING.

Example:

%E: PROC RETURNS(CHAR)
...

%E: PROC RETURNS(CHAR);

Explanation: No action is taken unless the
multiply-defined label is referenced by a statement that
is executed.

Programmer Response: Change the label on one of
the %PROCEDURE statements, or remove one of the
procedures.

IEL0103I E INVALID USE OF D.

INVALID USE OF FUNCTION D ON LEFT
OF EQUALS SYMBOL. REFERENCE
WILL END PROCESSING.

Example:

%DCL E ENTRY RETURNS(CHAR);

%E = 'ABC';

Explanation: Entry names and built-in function names
cannot appear on the left-hand side of an assignment
statement. Execution of such a statement will terminate
processing.

12 PL/I for MVS & VM Messages and Codes

 IEL0104I E � IEL0113I W

IEL0104I E CONFLICTING USE OF D.

CONFLICTING USE OF IDENTIFIER D AS
ENTRY NAME. REFERENCE WILL END
PROCESSING.

Example:

%DCL C CHAR;

%C = C(I);

Explanation: An identifier followed by a parenthesis in
a preprocessor expression is considered to be an entry
name. Execution of such a statement will terminate
processing.

IEL0105I E MULTIPLE USE OF D IN PARAMETER
LIST.

PARAMETER D APPEARS MORE THAN
ONCE IN PARAMETER LIST. AN
ARGUMENT CORRESPONDING TO
SECOND USE OF PARAMETER WILL
NOT BE USED WITHIN PROCEDURE.

Example:

%E: PROC(P,P) RETURNS(CHAR);

Explanation: The number of parameters to the
procedure is not changed, but, within the procedure,
references to the multiply-defined parameter will apply
to its first use.

IEL0106I S MORE THAN N PARAMETERS USED.

PREPROCESSOR RESTRICTION. MORE
THAN N PARAMETERS USED.
REFERENCE WILL END PROCESSING.

Explanation: Processing is ended if a procedure
having more than fifteen parameters is referenced by a
statement that is executed.

IEL0107I E MISSING PARAMETER.

MISSING PARAMETER. A
CORRESPONDING ARGUMENT WILL
NOT BE USED WITHIN PROCEDURE.

Example:

%PROCL: PROCEDURE (P1,P2,,P4)

RETURNS(CHAR);

Explanation: The assumption is made that the
omission of the parameter is intentional.

IEL0108I E PARAMETER T INVALID.

PARAMETER T INVALID. AN
ARGUMENT CORRESPONDING TO THE
PARAMETER WILL NOT BE USED
WITHIN THE PROCEDURE.

Example:

%P: PROC(8) RETURNS(CHAR);

Explanation: The expected parameter is not an
identifier. The parameter is assumed to exist but is not
identified within the procedure.

IEL0109I S T TO NEXT COMMA OR SEMICOLON
IGNORED.

INVALID BLANK OR MISSING COMMA IN
PARAMETER LIST. TEXT IGNORED
FROM T TO NEXT COMMA OR
SEMICOLON.

Example:

%PROC1: PROC (P1,P2,P3 P4)

RETURNS(CHAR);

IEL0110I S RIGHT PARENTHESIS ASSUMED FOR
SEMICOLON.

SEMICOLON FOUND IN PARAMETER
LIST. RIGHT PARENTHESIS ASSUMED.

Example:

%E: PROC (P ;

Explanation: A semicolon has been encountered
during the scan of an apparent parameter list. A right
parenthesis has been inserted before the semicolon.

IEL0111I E INVALID RETURNED VALUE T
REPLACED BY 'CHARACTER'.

RETURNED VALUE NOT 'FIXED' OR
'CHARACTER'. T REPLACED BY
'CHARACTER'.

Example:

%E: PROC RETURNS(BIT);

Explanation: Returned values can only be FIXED or
CHARACTER. CHARACTER is the assumed attribute.

IEL0112I E 'RETURNS(CHAR)' ASSUMED FOR
RETURNED VALUE.

NO ATTRIBUTE FOR RETURNED
VALUE. 'RETURNS(CHAR)' ASSUMED.

Example:

%P: PROC;

IEL0113I W INVALID CONTINUATION OF GRAPHIC
STRING.

INVALID CONTINUATION OF GRAPHIC
STRING. LAST COLUMN ON LINE
IGNORED.

Explanation: This message is issued by the
preprocessor. Since each graphic requires 2 bytes, you
must be sure that the graphic string follows the
continuation rules described in the PL/I for MVS & VM
Language Reference.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 13

 IEL0114I E � IEL0122I E

IEL0114I E T IS IGNORED.

T IS IGNORED IN '%DEACTIVATE'
STATEMENT.

Example:

%DEACTIVATE A NORESCAN;

Explanation: RESCAN and NORESCAN options are
only valid in a %ACTIVATE statement.

IEL0115I W CHARACTER ASSUMED FOR
UNDECLARED D.

REFERENCE TO UNDECLARED
IDENTIFIER D. CHARACTER
ATTRIBUTE ASSUMED.

Example:

%DCL (A,B) CHAR C FIXED;

%D = A||B;

Explanation: D is given the attribute CHAR by default.

IEL0116I S '%PROCEDURE' STATEMENT INVALID.

'%PROCEDURE' STATEMENT IN
PREPROCESSOR PROCEDURE. TEXT
IGNORED TO NEXT PREPROCESSOR
'%END' STATEMENT.

Example:

%PROC: PROC;

PROC6: PROC;

END PROC6;

 %END;

Explanation: Procedures cannot be nested in
preprocessor procedures. Other messages might be
generated by this error.

IEL0117I S '%PROCEDURE' STATEMENT
REPLACED BY NULL.

'%PROCEDURE' STATEMENT IN
'%THEN' OR '%ELSE' CLAUSE
REPLACED BY NULL STATEMENT.
TEXT IGNORED TO NEXT
PREPROCESSOR '%END' STATEMENT.

Example:

%IF C1 = C2 %THEN %PROC2: PROCEDURE;

END PROC2;

%ELSE %PROC3: PROCEDURE; etc.

Explanation: %PROCEDURE statements are not
allowed in preprocessor THEN or ELSE clauses. Other
messages might be generated by this error.

IEL0118I S '%RETURN' STATEMENT INVALID.
IGNORED.

'%RETURN' STATEMENT INVALID
OUTSIDE PREPROCESSOR
PROCEDURE. STATEMENT IGNORED.

Example:

%RETURN(ð);

IEL0119I E MISSING PARENTHESIS ASSUMED.

MISSING PARENTHESIS ASSUMED FOR
'RETURN' EXPRESSION.

Example:

%P: PROC FIXED;

RETURN 6);

%END;

IEL0120I E INVALID TEXT. T TO SEMICOLON
IGNORED.

INVALID TEXT AFTER EXPRESSION IN
'RETURN' STATEMENT. TEXT
IGNORED FROM T TO SEMICOLON.

Example:

%P: PROC RETURNS(CHAR);

RETURN ('1') IF A = B;

%END;

Explanation: The RETURN statement has been
processed but scan finds text when it expects a
semicolon.

IEL0121I S 'GOTO' STATEMENT IGNORED.

NO OPERAND IN 'GOTO'. STATEMENT
IGNORED.

Example:

%GOTO;

IEL0122I E CONFLICTING USE OF D.

USE OF IDENTIFIER D IN '%GOTO'
STATEMENT CONFLICTS WITH
PREVIOUS USE. REFERENCE WILL
END PROCESSING.

Example:

%P = PROC RETURNS(FIXED);
...

%GOTO P;

14 PL/I for MVS & VM Messages and Codes

 IEL0123I S � IEL0133I E

IEL0123I S SEMICOLON MISSING. T TO NEXT
SEMICOLON IGNORED.

SEMICOLON MISSING AFTER '%GOTO'
STATEMENT. TEXT IGNORED FROM T
TO NEXT SEMICOLON.

Example:

%GOTO LABEL4 C1 = C2;

IEL0124I U '%GOTO' IS AN INVALID BRANCH.

OPERAND OF '%GOTO' IS LABEL IN
ITERATIVE 'DO' OR INCLUDED TEXT.
PROCESSING TERMINATED.

Example:

% GOTO L1;
...

% DO I 1 TO N;

%L1:

%END;

IEL0125I S STATEMENT INVALID IN PROCEDURE.

INVALID '%ACTIVATE' OR
'%DEACTIVATE' IN PREPROCESSOR
PROCEDURE. STATEMENT IGNORED.

Explanation: ACTIVATE and DEACTIVATE
statements cannot be used in preprocessor procedures.

IEL0126I E STATEMENT HAS NO OPERAND.
IGNORED.

'%ACTIVATE' OR '%DEACTIVATE'
HAS NO OPERAND. STATEMENT
IGNORED.

Example:

%ACTIVATE;

IEL0127I E REDUNDANT COMMA IGNORED.

MISSING OPERAND OR REDUNDANT
COMMA IN '%ACTIVATE' OR
'%DEACTIVATE'. COMMA IGNORED.

Example:

%DEACTIVATE C5,, C6;

IEL0128I S INVALID FIELD T IGNORED.

INVALID FIELD T IN '%ACTIVATE' OR
'%DEACTIVATE ' STATEMENT IS
IGNORED.

Example:

%ACTIVATE 7TIMES;

IEL0129I S IDENTIFIER D IGNORED.

IDENTIFIER D NOT PROCEDURE OR
VARIABLE. IT HAS BEEN IGNORED IN
'%ACTIVATE' OR '%DEACTIVATE'
STATEMENT.

Example:

%LABEL4: ;

% DEACTIVATE LABEL4;

(where LABEL4 is a statement label).

IEL0130I S T TO COMMA OR SEMICOLON
IGNORED.

INVALID BLANK OR MISSING COMMA IN
'%ACTIVATE' OR '%DEACTIVATE'
STATEMENT. TEXT IGNORED FROM T
TO COMMA OR SEMICOLON.

Example:

%DEACTIVATE C5, C6 C7;

%DEACTIVATE IDENTIFIER;

IEL0131I S NONITERATIVE 'DO' ASSUMED.

INVALID SYNTAX IN 'DO' STATEMENT.
NONITERATIVE 'DO' ASSUMED.

Example:

%DO A: = 1 TO 1ð;

IEL0132I W NO MAXIMUM VALUE FOR 'DO'
ITERATION.

NO MAXIMUM VALUE SPECIFIED FOR
'DO' ITERATION.

Example:

%DO I = 1 BY 1;

 %EXIT;

%END;

Explanation: This warning is given because the
program might loop.

Programmer Response: If the program loops, provide
an iteration limit or an alternative exit.

IEL0133I E SEMICOLON ASSUMED BEFORE '%'.

MISSING SEMICOLON ASSUMED
BEFORE '%'.

Explanation: A percent found in the text has been
assumed to signify the start of a new statement.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 15

 IEL0134I E � IEL0145I E

IEL0134I E SECOND 'TO' REPLACED BY 'BY'.

SECOND 'TO' FOUND IN ITERATION
SPECIFICATION OF 'DO' STATEMENT.
REPLACED BY 'BY'.

Example:

%DO I = 1 TO 1ð TO 1;

%DO I = 1 TO 1ð TO 1 BY 1;

(BY will have been ignored when this message occurs.)

IEL0135I E SECOND 'BY' REPLACED BY 'TO'.

SECOND 'BY' FOUND IN ITERATION
SPECIFICATION OF 'DO' STATEMENT.
REPLACED BY 'TO'.

Example:

%DO I = 1 BY 1 BY 1ð;

IEL0136I E SEMICOLON MISSING. T TO NEXT
SEMICOLON IGNORED.

MISSING SEMICOLON IN 'DO'
STATEMENT. TEXT FROM T TO NEXT
SEMICOLON IGNORED.

Example:

%DO I = 1 TO 1ð BY 1 BY 7;

 ↑

 T

IEL0137I E NULL STATEMENT ASSUMED BEFORE
'END'.

'END' STATEMENT MAY NOT FOLLOW
'THEN' OR 'ELSE'. NULL STATEMENT
ASSUMED BEFORE 'END'.

Example:

%DO; %IF C1 = C2 %THEN %END;

IEL0138I E SEMICOLON MISSING. T TO NEXT
SEMICOLON IGNORED.

MISSING SEMICOLON IN 'END'
STATEMENT. TEXT FROM T TO NEXT
SEMICOLON IGNORED.

Explanation: A %END statement must be followed by
a semicolon or by a label and a semicolon.

IEL0139I E REDUNDANT '%END' STATEMENT
IGNORED.

Explanation: A %END statement is not preceded by a
%DO or %PROCEDURE statement that has not already
been terminated.

IEL0140I E REFERENCE TO UNKNOWN LABEL
IGNORED.

LABEL REFERENCED IN '%END'
STATEMENT NOT FOUND. REFERENCE
IGNORED.

Explanation: The operand of the %END statement
cannot be matched with the label on a %PROCEDURE
or %DO statement which does not already have a
matching %END statement.

IEL0141I E '%' ASSUMED BEFORE 'END'
STATEMENT.

'%' ASSUMED BEFORE 'END'
STATEMENT OF PROCEDURE.

Explanation: The END statement is the logical end of
the procedure and should be preceded by “%.”

IEL0142I E T NOT A LABEL. IGNORED.

IDENTIFIER T ON '%END' STATEMENT
NOT A LABEL. IDENTIFIER IGNORED.

Example:

%X = Y + A;
...

%END A;

IEL0143I E NO 'RETURN' STATEMENT IN
PROCEDURE.

NO 'RETURN' STATEMENT IN
PROCEDURE T. NULL VALUE WILL BE
RETURNED.

Explanation: The PL/I language requires the use of a
RETURN statement in a preprocessor procedure; a null
value is returned if a procedure without a RETURN
statement is invoked.

IEL0144I S '%INCLUDE' INVALID IN PROCEDURE.

'%INCLUDE' STATEMENT INVALID IN
PREPROCESSOR PROCEDURE.
STATEMENT IGNORED.

Example:

%!PROC1: PROCEDURE (P1, P2) RETURNS(CHAR);

INCLUDE RUBBISH;

%END;

IEL0145I E DDNAME TRUNCATED TO N
CHARACTERS.

PREPROCESSOR RESTRICTION.
DDNAME TRUNCATED TO FIRST N
CHARACTERS.

Explanation: The first of a pair of data-set identifiers
is a ddname limited to a maximum of 8 characters.

16 PL/I for MVS & VM Messages and Codes

 IEL0146I S � IEL0156I E

IEL0146I S INVALID FIELD. TEXT IGNORED FROM
T.

INVALID FIELD IN '%INCLUDE'
STATEMENT. TEXT IGNORED FROM T
TO NEXT COMMA OR SEMICOLON.

Example:

%INCLUDE 7RECORDS;

IEL0147I S STATEMENT HAS NO OPERAND.
IGNORED.

'%INCLUDE' STATEMENT HAS NO
OPERAND. STATEMENT IGNORED.

Example:

%INCLUDE;

IEL0148I E MEMBER NAME TRUNCATED TO N
CHARACTERS.

PREPROCESSOR RESTRICTION.
MEMBER NAME TRUNCATED TO FIRST
N CHARACTERS.

Explanation: Only the first 8 characters of a data-set
name are used.

IEL0149I E RIGHT PARENTHESIS ASSUMED.

MISSING RIGHT PARENTHESIS
ASSUMED AFTER MEMBER NAME.

IEL0150I S BLOCK SIZE TOO LARGE FOR
'%INCLUDE' FILE T.

BLOCK SIZE EXCEEDS N FOR
'%INCLUDE' FILE T. PROCESSING OF
FILE TERMINATED.

Explanation: When the INCLUDE compile-time option
is used, the maximum block size for an included data
set is 32760 bytes.

Programmer Response: Use IEBGENER or a similar
utility program to recreate the data set with the allowed
block size.

IEL0151I S 'DECLARE' STATEMENT IGNORED.

'DECLARE' STATEMENT INVALID
AFTER 'THEN' OR 'ELSE'.
STATEMENT IGNORED.

Example:

%IF C1 = C2

%THEN %DCL C1 FIXED;

Explanation: A DECLARE statement can only appear
after THEN or ELSE when inside a DO group.

IEL0152I E STATEMENT HAS NO OPERAND.
IGNORED.

'%DECLARE' STATEMENT HAS NO
OPERAND. STATEMENT IGNORED.

Example:

%DECLARE;

IEL0153I S MAXIMUM FACTORING LEVEL IS N.

PREPROCESSOR RESTRICTION. N
LEVELS MAXIMUM FOR FACTORING IN
'DECLARE' STATEMENT. TEXT TO
NEXT SEMICOLON IGNORED.

Explanation: A DECLARE statement with too many
levels of factoring has been detected.

Programmer Response: Subdivide the DECLARE
statement into two or more separate statements so that
the level of factoring becomes acceptable.

IEL0154I E REDUNDANT COMMA IGNORED.

MISSING OPERAND OR REDUNDANT
COMMA IN 'DECLARE' STATEMENT.
COMMA IGNORED.

Example:

%DCL (C1, C2,, C3) CHAR;

IEL0155I E DUMMY IDENTIFIER ASSUMED.

IDENTIFIER MISSING WHERE
EXPECTED. DUMMY ASSUMED.

Example:

DCL () CHAR;

Explanation: The preprocessor expected to find an
identifier but found a delimiter.

IEL0156I E MULTIPLE DECLARATION OF D.

MULTIPLE DECLARATION OF
IDENTIFIER D. REFERENCE WILL END
PROCESSING.

Example:

%DCL C CHAR;

%DCL C CHAR;

Explanation: An identifier can be declared only once.
No action is taken unless the multiply-declared identifier
is referenced.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 17

 IEL0157I S � IEL0169I E

IEL0157I S INVALID SYNTAX. TEXT IGNORED
FROM T.

INVALID SYNTAX IN 'DECLARE'
STATEMENT. TEXT IGNORED FROM T
TO NEXT SEMICOLON.

Example:

%DCL 7 FIXED;

IEL0158I E LABEL D CANNOT BE DECLARED.

LABEL D CANNOT BE DECLARED.
REFERENCE WILL END PROCESSING.

Example:

%L: ;

%DECLARE L FIXED;

IEL0159I E REDUNDANT RIGHT PARENTHESIS
IGNORED.

Example:

%DCL (B1, E2)) FIXED;

IEL0160I E T IGNORED.

INVALID ATTRIBUTE T IGNORED.

Example:

%DECLARE B BIT CHAR;

Explanation: The position in which an attribute is
expected contains something other than FIXED,
CHARACTER, BUILTIN, ENTRY, or RETURNS.

IEL0161I E RIGHT PARENTHESIS ASSUMED.

MISSING RIGHT PARENTHESIS
ASSUMED.

Example:

DCL (C1, C2 CHAR;

IEL0162I E 'RETURNS' BUT NO 'ENTRY'
ATTRIBUTE FOR D.

'RETURNS' BUT NO 'ENTRY'
ATTRIBUTE FOR PROCEDURE D IN
'DECLARE' STATEMENT BEGINNING
AT OR BEFORE THIS LINE.

Example:

%DCL PROC2 RETURNS(FIXED);

Explanation: The identifier is treated as an entry
name. The effect of this statement is to activate the
entry name. This error will also cause message
number IEL0069I to be printed.

IEL0163I W ATTRIBUTE T ASSUMED FOR D.

NO ATTRIBUTES DECLARED FOR
IDENTIFIER D. 'CHARACTER'
ASSUMED.

Example:

%DCL A1, A2 CHAR;

Explanation: The attribute CHAR is assumed for an
identifier declared without attributes, unless the identifier
is given previously as a label on the PROCEDURE
statement, in which case ENTRY is assumed.

IEL0164I I REPLACING 'MACRO' BY 'INCLUDE'
WILL REDUCE COMPILE TIME.

COMPILE TIME FOR THIS PROGRAM
WILL BE REDUCED IF THE 'INCLUDE'
COMPILER OPTION IS SPECIFIED
INSTEAD OF 'MACRO'.

Explanation: You have specified the MACRO
compile-time option. However, since all the
preprocessor statements in your source program are
%INCLUDE statements, compilation will be faster if you
specify the INCLUDE compile-time option instead.

IEL0165I S '%GOTO' D IS AN INVALID BRANCH.

'%GOTO' D IS AN INVALID BRANCH
INTO INCLUDED TEXT. EXECUTION
WILL END PROCESSING.

Explanation: A source statement module included in
the text by a %INCLUDE statement contains a %GOTO
statement that refers to a label contained in a source
statement module included in the text by a further
nested %INCLUDE statement.

IEL0168I E LABEL IGNORED.

LABEL INVALID ON LISTING CONTROL
STATEMENT. LABEL IGNORED.

Example:

%L: PAGE;

Explanation: A listing control statement should not be
prefixed by a label.

IEL0169I E CONFLICTING ATTRIBUTE T FOR D
IGNORED.

CONFLICTING ATTRIBUTES FOR
IDENTIFIER D. ATTRIBUTE T IGNORED.

Example:

%DCL P CHAR RETURNS(CHAR);

18 PL/I for MVS & VM Messages and Codes

 IEL0170I E � IEL0182I U

IEL0170I E CONFLICTING DECLARATION OF D.

DECLARATION OF IDENTIFIER D
CONFLICTS WITH PREVIOUS USE.
REFERENCE WILL END PROCESSING.

Example:

%E: PROC RETURNS(CHAR);

%END;

%DCL E CHAR;

IEL0171I E ZERO OPERAND ASSUMED.

MISSING OPERAND. FIXED DECIMAL
ZERO ASSUMED.

Example:

%A = A + ;

IEL0172I S T REPLACED BY PLUS.

INVALID OPERAND T REPLACED BY
PLUS.

Example:

%A = A\\2;

Explanation: Operators “**” and “->” are not allowed in
preprocessor statements.

IEL0173I W BLANK ASSUMED AFTER T.

BLANK ASSUMED BETWEEN
CONSTANT T AND FOLLOWING
LETTER.

IEL0174I E 'NOT' REPLACED BY 'NE'.

OPERATOR 'NOT' USED AS INFIX
OPERATOR. REPLACED BY 'NE'.

IEL0175I W TEXT FOLLOWING '%PAGE' IGNORED
TO NEXT SEMICOLON.

PREPROCESSOR RESTRICTION. TEXT
FOLLOWING '%PAGE' IGNORED TO
NEXT SEMICOLON.

Example:

%PAGE ('NEW TITLE', 2ðð);

Explanation: The preprocessor does not implement
the TITLE or page numbering option of the %PAGE
listing control statement.

IEL0176I E CONFLICTING USE OF D.

USE OF IDENTIFIER D IN EXPRESSION
CONFLICTS WITH PREVIOUS USE.
REFERENCE WILL END PROCESSING.

Example:

%LAB;A = LAB + 2;

IEL0177I W TEXT ON SAME LINE AS LISTING
CONTROL STATEMENT.

PREPROCESSOR RESTRICTION. TEXT
ON SAME LINE AS LISTING CONTROL
STATEMENT. STATEMENT NOT
IMPLEMENTED.

Example:

A = B;

%PAGE; A = B;

Explanation: A listing control statement is not
implemented by the preprocessor if any other text
appears on the same line.

IEL0178I S PLUS ASSUMED AS OPERATOR.

MISSING OPERATOR. PLUS ASSUMED.

Example:

%C = A B;

IEL0179I S ZERO EXPRESSION ASSUMED.

EXPRESSION MISSING. FIXED
DECIMAL ZERO ASSUMED.

Example:

%CL = ;

IEL0180I S T REPLACED BY ZERO.

INVALID OPERAND T REPLACED BY
FIXED DECIMAL ZERO.

Example:

%A = B + 1C;

IEL0181I E LEFT PARENTHESIS ASSUMED.

MISSING LEFT PARENTHESIS
ASSUMED AT BEGINNING OF
EXPRESSION.

Example:

%F1 = F2 + F3);

IEL0182I U REFERENCE TERMINATED
PROCESSING. REFERENCE TO
STATEMENT OR IDENTIFIER WHICH IS
IN ERROR. PROCESSING TERMINATED.

Explanation: The preprocessor tried to execute a
statement or use an identifier which is in error.

Programmer Response: Check the other messages
for the error, and correct the program.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 19

 IEL0183I W � IEL0194I S

IEL0183I W EXCESS ARGUMENTS TO D IGNORED.

TOO MANY ARGUMENTS TO FUNCTION
D. EXCESS ARGUMENTS IGNORED.

Example:

%E: PROCEDURE(P,Q) RETURNS(FIXED);

%DECLARE (P,Q) FIXED;

%END;

%C = E(A,B,C);

Explanation: There are too many arguments in the
procedure reference.

IEL0184I W TOO FEW ARGUMENTS TO D.

TOO FEW ARGUMENTS TO FUNCTION
D. NULL STRINGS PASSED AS
MISSING ARGUMENTS.

Example:

%E: PROCEDURE(P,Q) RETURNS(FIXED);

DECLARE (P,Q) FIXED;

%END;

%C = E(A);

Explanation: There are too few arguments in the
procedure reference. For a fixed argument the null
string will be converted to fixed zero.

IEL0185I S RECORD LENGTH EXCEEDS N FOR
MEMBER T.

LOGICAL RECORD LENGTH GREATER
THAN N FOR '%INCLUDE' MEMBER T.
RECORD TRUNCATED.

Explanation: For V-format or U-format records, the
maximum allowed data length is 100 bytes.

Programmer Response: Recreate the data set with
an allowed record length if necessary.

IEL0186I U PROCEDURE D NOT FOUND.

REFERENCED PROCEDURE D NOT
FOUND. PROCESSING TERMINATED.

Explanation: An entry declaration statement has been
found for a procedure which is not present in the text.

IEL0187I U RECURSIVE USE OF D INVALID.

RECURSIVE USE OF PROCEDURE D
INVALID. PROCESSING TERMINATED.

Example:

%P: PROCEDURE RETURNS(CHAR);

RETURN(P + 7);

%END;

%C = P;

IEL0188I E NULL STRING RETURNED FOR
'SUBSTR'.

TOO FEW ARGUMENTS SPECIFIED FOR
BUILTIN FUNCTION 'SUBSTR'. NULL
STRING RETURNED.

Example:

%S = SUBSTR(A);

IEL0189I E EXCESS ARGUMENTS TO T IGNORED.

TOO MANY ARGUMENTS SPECIFIED
FOR BUILTIN FUNCTION T. EXCESS
ARGUMENTS IGNORED.

Example:

%S = SUBSTR(A,B,C,D);

IEL0190I E RESULT TRUNCATED TO 5 DIGITS.

FIXED OVERFLOW. RESULT
TRUNCATED TO RIGHTMOST 5 DIGITS.

Example:

%A = 99999;

%A = A + 3;

IEL0191I E ZERO DIVIDE. RESULT SET TO ONE.

Example:

%A = O;

%B = B / A;

IEL0192I S END OF SOURCE TEXT IN STATEMENT.

END OF SOURCE TEXT IN STATEMENT.
STATEMENT EXECUTION WILL END
PROCESSING.

IEL0193I E IDENTIFIER BEGINNING T TRUNCATED.

PREPROCESSOR RESTRICTION.
IDENTIFIER BEGINNING T IS TOO
LONG. TRUNCATED TO FIRST 31
CHARACTERS.

Explanation: You can not have identifiers that require
more than 31 bytes of storage.

IEL0194I S T HAS PRECISION GREATER THAN N.

PREPROCESSOR RESTRICTION.
CONSTANT T HAS PRECISION
GREATER THAN N. FIXED DECIMAL
ZERO ASSUMED.

Example:

%A = 123456;

Explanation: The precision of fixed decimal numbers
is limited to n digits. The value of zero is assumed for
the constant.

20 PL/I for MVS & VM Messages and Codes

 IEL0195I E � IEL0207I W

IEL0195I E QUESTION MARK IGNORED.

Explanation: Question mark has no syntactical
meaning.

IEL0196I S PRECISION OF CONVERTED BIT STRING
GREATER THAN N.

PREPROCESSOR RESTRICTION. BIT
STRING CONVERTS TO FIXED DECIMAL
NUMBER WITH PRECISION GREATER
THAN N. RESULT TRUNCATED ON THE
LEFT.

Example:

%DECLARE C CHARACTER, F FIXED;

%C = '1ððððððððððððððððð'B;

%F = (C&C);

Explanation: If the bit string has more than 32 bits,
the last 32 bits are taken for the conversion.

IEL0197I S STRING INVALID FOR CONVERSION.

STRING CONTAINS CHARACTER NOT
'1' OR '0' AND CANNOT BE
CONVERTED TO BIT STRING. '0'
ASSUMED FOR INVALID CHARACTERS.

Example:

%C = 'A';

%C = (C&(A ¬= B));

IEL0198I S STRING INVALID FOR CONVERSION.

STRING CANNOT BE CONVERTED TO
FIXED DECIMAL. FIXED ZERO RESULT
ASSUMED.

Example:

%C = '1B'

%A = 2 + C;

IEL0199I E '%' MISSING ON LISTING CONTROL
STATEMENT.

'%' MISSING ON LISTING CONTROL
STATEMENT IN COMPILE-TIME
PROCEDURE.

Example:

%P: PROC RETURNS(CHAR);

 SKIP(2);

%END;

Explanation: A listing control statement, even when in
a preprocessor procedure, must be preceded by “%.”

IEL0200I U REFERENCE TO D TERMINATED
PROCESSING.

IDENTIFIER D WITH CONFLICTING USE
OR MULTIPLE DEFINITIONS
REFERENCED. PROCESSING
TERMINATED.

Explanation: An attempt has been made to execute a
statement referencing an improperly defined identifier.

Programmer Response: Check the other messages
for the error, and correct the program.

IEL0201I W D IS UNINITIALIZED.

UNINITIALIZED VARIABLE T USED.
NULL STRING OR ZERO VALUE GIVEN.

Example:

%DECLARE A FIXED;

%B = A;

Explanation: Variables should be assigned values
before being used.

IEL0202I U 'DD' STATEMENT FOR '%INCLUDE' D
MISSING.

'DD' STATEMENT FOR '%INCLUDE' D
MISSING. PROCESSING TERMINATED.

IEL0203I U I/O ERROR SEARCHING FOR
'%INCLUDE' D.

UNRECOVERABLE I/O ERROR
SEARCHING FOR '%INCLUDE'
MEMBER D. PROCESSING
TERMINATED.

IEL0204I U INVALID RECORD FORMAT FOR
'%INCLUDE' D.

INVALID RECORD FORMAT SPECIFIED
FOR '%INCLUDE' D. PROCESSING
TERMINATED.

IEL0205I U '%INCLUDE' D NOT FOUND ON DATA
SET.

'%INCLUDE' D MEMBER NOT FOUND
ON DATA SET. PROCESSING
TERMINATED.

IEL0206I W RECORD LENGTH ASSUMED EQUAL
TO BLOCKSIZE.

RECORD LENGTH NOT SPECIFIED FOR
'%INCLUDE' D. ASSUMED EQUAL TO
BLOCKSIZE.

IEL0207I W BLOCKSIZE ASSUMED EQUAL TO
RECORD LENGTH.

BLOCKSIZE NOT SPECIFIED FOR
'%INCLUDE' D. ASSUMED EQUAL TO
RECORD LENGTH.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 21

 IEL0208I W � IEL0217I W

IEL0208I W RECORD LENGTH 80 AND BLOCKSIZE
400 ASSUMED.

RECORD LENGTH AND BLOCKSIZE
NOT SPECIFIED FOR '%INCLUDE' D.
RECORD LENGTH OF 80 AND
BLOCKSIZE OF 400 ASSUMED.

IEL0209I U I/O ERROR IN READING FROM D.

I/O ERROR WHEN READING TEXT
INCLUDED FROM FILE D. PROCESSING
TERMINATED.

IEL0210I U LEVEL OF NESTING OR REPLACEMENT
TOO LARGE.

PREPROCESSOR RESTRICTION. LEVEL
OF NESTING OR REPLACEMENT
GREATER THAN MAXIMUM.
PROCESSING TERMINATED.

Explanation: The level of nesting is calculated by
summing the number of current unbalanced left
parentheses, the number of current nested DOs, the
number of nested IFs, and the number of current nested
replacements. A level of 25 is always acceptable.

IEL0212I S INPUT RECORD LENGTH LESS THAN
LEFT MARGIN.

LENGTH OF INPUT RECORD LESS
THAN LEFT MARGIN OF MARGINS
OPTION. RECORD IGNORED.

Explanation: The length of an input record is less
than the left margin of the MARGINS specification.

Programmer Response: Check the use of the
MARGINS compile-time option; check that a short
record is intended.

IEL0213I E 'RETURNS(FIXED)' ASSUMED.

DATA ATTRIBUTE IN '%PROCEDURE'
STATEMENT IS NOT PARENTHESIZED
AND IS NOT PRECEDED BY
'RETURNS'. 'RETURNS(FIXED)'
ASSUMED.

Example:

%P: PROC FIXED;

IEL0214I E 'RETURNS(CHAR)' ASSUMED.

DATA ATTRIBUTE IN '%PROCEDURE'
STATEMENT IS NOT PARENTHESIZED
AND IS NOT PRECEDED BY
'RETURNS'. 'RETURNS(CHAR)'
ASSUMED.

Example:

%P: PROC CHAR;

IEL0215I E MISSING PARENTHESIS IN D
ARGUMENT LIST.

RIGHT PARENTHESIS ASSUMED AT
END OF ARGUMENT LIST FOR
PROCEDURE D.

IEL0216I U INVALID STATEMENT IN D ARGUMENT
LIST.

ARGUMENT LIST FOR PROCEDURE D
CONTAINS A PREPROCESSOR
STATEMENT. PROCESSING
TERMINATED.

Example:

%DCL P ENTRY, X FIXED;

P(%X) = 1;

%P: PROC(A) RETURNS(CHAR);

%END;

Explanation: Preprocessor statements cannot be
embedded in the argument list of a preprocessor
function reference appearing in non-preprocessor text.

IEL0217I W ARGUMENT LIST FOR D MISSING.

ARGUMENT LIST FOR D IS MISSING.
PROCEDURE INVOKED WITHOUT
ARGUMENTS.

Example:

%DCL VAL CHAR;

%VAL = 'BA';

%BA: PROC(A,B) RETURNS(CHAR);

DCL (A,B) CHAR;

RETURN ('Z'||A||B);

%END BA;

%ACT BA;

VAL (C,D);

Explanation: When the active identifier VAL is
encountered, it is replaced by its current value BA.
Since the RESCAN option applies (by default), the
replacement value BA is rescanned for possible further
replacement. Since this value is an active reference to
a procedure with arguments, but no argument list is
present in the value being currently scanned, this
message is issued. The procedure BA is invoked
without arguments, and the returned value Z is inserted
into preprocessed text after further rescanning (and
replacement if appropriate).

Note: It is not possible for the argument list (C,D) to
be associated with the replacement value BA because
of the rules for rescanning and replacement. For details
of these rules, see the PL/I for MVS & VM Language
Reference.

22 PL/I for MVS & VM Messages and Codes

 IEL0218I E � IEL0228I E

IEL0218I E D USED FOR REPLACEMENT.

IDENTIFIER HAS MORE THAN N
CHARACTERS. REPLACEMENT DONE
ON TRUNCATED FORM D.

Explanation: An identifier activated for replacement by
the preprocessor has more than the allowed number of
characters. Consequently, any replacement will be
performed on the given truncated form.

Programmer Response: Modify the program so that
the identifier is reduced to an acceptable length or
check that the replacement of the truncated form given
does not result in further errors.

IEL0219I E THIRD ARGUMENT OF 'SUBSTR'
NEGATIVE.

THIRD ARGUMENT OF BUILTIN
FUNCTION 'SUBSTR' NEGATIVE. NULL
STRING RETURNED.

IEL0220I E THIRD ARGUMENT OF 'SUBSTR' TOO
LARGE.

THIRD ARGUMENT OF BUILTIN
FUNCTION 'SUBSTR' GREATER THAN
STRING LENGTH. RETURNED VALUE
TRUNCATED AT END OF SOURCE
STRING.

IEL0221I E ARGUMENTS OF 'SUBSTR' TOO
LARGE.

THE SUM OF THE SECOND AND THIRD
ARGUMENTS OF BUILTIN FUNCTION
'SUBSTR' GREATER THAN STRING
LENGTH PLUS ONE. RETURNED
VALUE TRUNCATED AT END OF
SOURCE STRING.

IEL0222I E SECOND ARGUMENT OF 'SUBSTR' SET
TO ONE.

SECOND ARGUMENT OF BUILTIN
FUNCTION 'SUBSTR' LESS THAN ONE.
VALUE SET TO ONE.

IEL0223I E SECOND ARGUMENT OF 'SUBSTR'
TOO LARGE.

SECOND ARGUMENT OF BUILTIN
FUNCTION 'SUBSTR' GREATER THAN
STRING LENGTH. NULL STRING
RETURNED.

IEL0224I S UNINITIALIZED VARIABLE IN
ARGUMENT LIST.

UNINITIALIZED VARIABLE USED IN
BUILTIN FUNCTION ARGUMENT LIST.
NULL STRING ASSUMED.

Explanation: The variable should be initialized before
invoking the built-in function. If the FIXED parameter is
matched with a null string argument, the parameter will
assume a value of zero.

IEL0225I U CHARACTER STRINGS TOO LONG.
COMPILATION TERMINATED IN PHASE
P.

COMPILER RESTRICTION. CHARACTER
STRING VARIABLES AND
TEMPORARIES TOO LONG.
COMPILATION TERMINATED IN PHASE
P.

Explanation: The total length of all character
preprocessor variables and all character string
temporaries being used in the evaluation of a
preprocessor expression cannot exceed a compiler
maximum value. Compilation is terminated as the
compiler dictionary has been filled up and no further
information can be held in it.

Programmer Response: The error message identifies
the preprocessor line being handled at the point of
termination. Check the program for source errors or
extremely long character string variables and correct or
redesign the program if necessary. Alternatively,
increase the storage available to the compiler; this
might alleviate the problem.

IEL0226I E RIGHT PARENTHESIS ASSUMED.

RIGHT PARENTHESIS ASSUMED AFTER
RETURNED VALUE IN '%PROCEDURE'
STATEMENT.

Example:

%P: PROC RETURNS(CHAR;

IEL0227I E LEFT PARENTHESIS ASSUMED.

LEFT PARENTHESIS ASSUMED
BEFORE MEMBER NAME.

Example:

%INCLUDE MEMBER);

IEL0228I E 'LENGTH' INVOKED WITH NO
ARGUMENTS.

BUILTIN FUNCTION 'LENGTH' INVOKED
WITH NO ARGUMENTS. FIXED ZERO
RETURNED.

Example:

%A = LENGTH;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 23

 IEL0229I E � IEL0238I W

IEL0229I E 'INDEX' INVOKED WITH LESS THAN
TWO ARGUMENTS.

BUILTIN FUNCTION 'INDEX' INVOKED
WITH LESS THAN TWO ARGUMENTS.
FIXED ZERO RETURNED.

Example:

%A = INDEX ('ABCDE');

or %A = INDEX;

IEL0230I U COMPILER ERROR OR RESTRICTION
NUMBER N DURING PHASE P.

COMPILER ERROR NUMBER N DURING
PHASE P.

Explanation: An error has occurred during compilation
or a compiler restriction has been exceeded. A detailed
explanation of error number N is given at the end of this
chapter in “Error and Restriction Numbers (0 to 946) for
IEL0001I, IEL0230I, and IEL0970I” on page 105.

Programmer Response: (for Errors) Check the PL/I
for MVS & VM Diagnosis Guide.

Programmer Response: (for Restrictions) Simplify the
source program.

IEL0232I S 'PROCEDURE' ASSUMED AS FIRST
STATEMENT.

FIRST STATEMENT NOT
'PROCEDURE'. 'PROCEDURE'
STATEMENT ASSUMED.

Explanation: The first statement in a source program
must be a PROCEDURE statement.

Programmer Response: The source program should
be checked, particularly the control (that is, JCL and
*PROCESS) statements and source margins. The
source program should be correctly recorded on its
input medium. Ensure that a PROCEDURE statement
heads the source program.

IEL0233I E COLON ASSUMED [AFTER T].

T ASSUMED TO BE STATEMENT LABEL.
COLON ASSUMED.

Example:

X GOTO Y:

Explanation: A statement keyword is preceded by a
possible label, but no colon is present.

IEL0234I S INVALID SYNTAX. T IGNORED.

STATEMENT BEGINS WITH INVALID
SYNTAX. T IGNORED.

IEL0235I S STATEMENT ASSUMED TO BE
CONTINUATION OF 'DECLARE'.

STATEMENT BEGINS WITH INVALID
SYNTAX. ASSUMED TO BE
CONTINUATION OF PRECEDING
'DECLARE' STATEMENT.

Example:

DCL A FIXED DEC(2,ð),

B FIXED DEC(2,ð);

C FIXED DEC(2,ð);

Explanation: An unrecognizable statement follows a
DECLARE statement and is assumed to be a
DECLARE statement also.

IEL0236I W INPUT RECORD LENGTH LESS THAN
LEFT MARGIN.

LENGTH OF INPUT RECORD LESS
THAN LEFT MARGIN OF 'MARGINS'
OPTION. RECORD IGNORED.

Programmer Response: Check the use of the
MARGINS compile-time option, and/or that a short
record is intentional.

IEL0237I S INVALID CHARACTER [AFTER T]. T
IGNORED.

TEXT IN OR FOLLOWING THIS
STATEMENT CONTAINS INVALID
CHARACTER [AFTER T]. T IGNORED.

Example:

CALL E(A,B,?);

Explanation: The presence of an invalid character
might be detected before the start of a statement.
Consequently, the statement number cannot be
updated. When such an error is detected, the text is
ignored from the start of the statement to the invalid
character. The remaining characters in the statement
will be treated as the complete statement.
Consequently, other errors will almost certainly be
indicated. These apparent errors will not be indicated if
the program is recompiled with the invalid character
corrected.

IEL0238I W CHARACTER STRING CONTAINS
SEMICOLON.

CHARACTER STRING CONSTANT
CONTAINS SEMICOLON.

Example:

STRING = 'B = C;';

24 PL/I for MVS & VM Messages and Codes

 IEL0239I W � IEL0247I S

Explanation: A common error is to omit one of a pair
of quotation marks round a character string constant.
The presence of a semicolon in a constant could be an
indication of such an error, although it is not an error
itself.

IEL0239I W COMMENT CONTAINS SEMICOLON.

COMMENTS IN OR FOLLOWING
STATEMENT CONTAIN ONE OR MORE
SEMICOLONS.

Example:

/\ A = B; \/

Explanation: A common error is to omit the delimiter
“*/” after a comment. The presence of a semicolon in a
comment could be an indication of such an error,
although it is not an error in itself.

IEL0240I S QUOTE ASSUMED [AFTER T].

END OF SOURCE TEXT FOUND WITH
UNMATCHED QUOTE. QUOTE
ASSUMED [AFTER T].

Explanation: A quotation mark has been omitted
causing the latter part of the program to appear as a
string constant. A quote has been inserted prior to the
first semicolon in this string. Note that statement
numbers for statements following the statement in which
the unmatched quote appears will not be printed.

Programmer Response: Check whether the quote
was omitted or the source program is incomplete.

IEL0241I S 'END' STATEMENT(S) ASSUMED.

END OF SOURCE TEXT FOUND BEFORE
LOGICAL END OF PROGRAM. N 'END'
STATEMENT(S) ASSUMED.

Explanation: There are insufficient END statements to
close all blocks. Any incomplete statements are
ignored. Sufficient END statements are assumed in
order to give valid nesting.

Programmer Response: Check the program block
structure and that the source program is complete.

IEL0242I S STATEMENT TOO LARGE. T TO T
IGNORED.

COMPILER RESTRICTION. STATEMENT
EXCEEDS MAXIMUM LENGTH. TEXT
IGNORED FROM T TO T.

Explanation: The statement is too long to be handled
in the space that has been allotted to the compiler.

Programmer Response: Allot more storage using the
SIZE parameter. If SIZE(MAX) is already being used
then try to compile in a larger area. If this is not
possible, divide the statement or remove extra blanks.

IEL0243I S INVALID IDENTIFIER [AFTER T]. T
REPLACED BY NULL.

INVALID IDENTIFIER FOLLOWING
KEYWORD T. T REPLACED BY NULL
STATEMENT.

Example:

 1. GOTO \;

 2. CALL 1;

 3. ON(A

IEL0244I S QUOTE ASSUMED [AFTER T].

STATEMENT LENGTH MORE THAN
COMPILER MAXIMUM AND CONTAINS
UNMATCHED QUOTE. QUOTE
ASSUMED [AFTER T].

Explanation: The compiler has assumed that the
statement size appears to be too long because of the
omission of a quote, and has assumed a quote prior to
a semicolon within the statement. Note that statement
numbers for statements following the statement in which
the unmatched quote appears will not be printed.

IEL0245I S OPERAND INVALID [AFTER T].

OPERAND MISSING OR INVALID IN
EXPRESSION [AFTER T].

Explanation: The compiler action depends on the
context of the expression. A further message will
indicate the action taken.

Programmer Response: Check for a further message
for this statement.

IEL0246I S OPERATOR INVALID [AFTER T].

INVALID USE OF PREFIX OPERATOR
[AFTER T].

Example:

A = B + 4 ¬ C;

 |____________|

 T1

Explanation: The compiler action depends on the
context of the expression. A further message will
indicate the action taken.

Programmer Response: Check for the invalid use of
an operator.

IEL0247I S INVALID SYNTAX. T REPLACED BY N.

INVALID SYNTAX IN 'IF' STATEMENT
EXPRESSION. T HAS BEEN REPLACED
BY N.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 25

 IEL0249I E � IEL0257I S

 T

 |----|

IF A+,B THEN GO TO LAB;

 ↑

 error

Explanation: The reason for the syntax error is
diagnosed separately.

IEL0249I E T SHORTENED TO T.

COMPILER RESTRICTION. IDENTIFIER
T TOO LONG. SHORTENED TO T.

Explanation: The identifier is more than 31 characters
long. The first 16 and last 15 characters are retained.
This can cause the identifier to be no longer unique.

IEL0250I W OPTION T OBSOLETE BUT ACCEPTED.

'ENVIRONMENT' OPTION T IS
OBSOLETE BUT IS ACCEPTED.

Example:

Old - DCL F FILE ENV(V(1ðð)...);

New - DCL F FILE ENV(V BLKSIZE(1ðð)...):

IEL0251I S CONSTANT T TOO LONG.

COMPILER RESTRICTION. ARITHMETIC
CONSTANT T IS TOO LONG.

Explanation: The number of digits allowed depends
on the type of constant, that is, fixed or float. The
expression containing the constant is ignored. Further
action is indicated by subsequent messages depending
on the context of the expression.

Programmer Response: Check the limits of the
arithmetic constant and reduce it to an acceptable size.

IEL0252I S EXPONENT MISSING IN T.

EXPONENT MISSING IN FLOATING
POINT CONSTANT T.

Example:

A = 123E \ B

Explanation: The character E is present but there are
no digits following it. The expression containing the
constant is ignored. Further action is indicated by
subsequent messages depending on the context of the
expression.

IEL0253I S CHARACTER IN T NOT ZERO OR ONE.

CHARACTER IN BINARY CONSTANT T
IS NOT ZERO OR ONE.

Explanation: The expression containing the constant
is ignored. Further action is indicated by subsequent
messages depending on the context of the expression.

Programmer Response: Check for a further message
for this statement.

IEL0254I W BLANK ASSUMED [AFTER T].

NO BLANK BETWEEN CONSTANT AND
FOLLOWING LETTER. BLANK
ASSUMED [AFTER T].

Example:

DCL 1 STRUC, 2 CODE CHAR(3),

 2TEXT CHAR(77);

 ↑

 T

IEL0255I S EXPONENT OF T TOO LONG.

COMPILER RESTRICTION. EXPONENT
OF CONSTANT T TOO LONG.

Explanation: A floating-point constant has an
exponent that exceeds the implementation-defined limit.
The expression containing the constant is ignored.
Further action is indicated by subsequent messages
depending on the context of the expression.

Programmer Response: Check for a further message
for this statement.

IEL0256I S NO SIGNIFICANT DIGITS IN T.

CONSTANT T HAS NO SIGNIFICANT
DIGITS.

Example:

 1. A = .E2;

 2. A = .E;

Explanation: The expression containing the “constant”
is ignored. Further action is indicated by subsequent
messages depending on the context of the expression.

Programmer Response: Check for a further message
for this statement.

IEL0257I S CHARACTER IN T NOT ZERO OR ONE.

CHARACTER IN BIT STRING CONSTANT
T IS NOT ZERO OR ONE.

Explanation: The expression containing the constant
is ignored. Further action is indicated by subsequent
messages depending on the context of the expression.

Programmer Response: Check for a further message
for this statement.

26 PL/I for MVS & VM Messages and Codes

 IEL0258I S � IEL0265I S

IEL0258I S INVALID PRECISION T IGNORED.

PRECISION SPECIFICATION NOT AN
UNSIGNED INTEGER. T IGNORED.

Example:

DCL G FIXED (+ABC) DECIMAL

 |---|

 T

IEL0259I S PRECISION TRUNCATED [AFTER T].

SECOND INTEGER MISSING FROM
PRECISION SPECIFICATION.
PRECISION TRUNCATED [AFTER T]
AFTER FIRST INTEGER.

Example:

 1. DCL A FIXED (9,X)

 --------------->

 T

 2. DCL B FIXED (3,)

 --------->

 T

 3. DCL C FIXED (4,D FLOAT;

 --------->

 T

Explanation: The base factor is assumed to be zero.

IEL0260I S INVALID CHARACTER [AFTER T 1]. T2

IGNORED.

INVALID CHARACTER IN PICTURE
[AFTER T1]. T2 IGNORED.

Example:

 T2

PIC '99W9'

 T1

IEL0261I S PARENTHESIS MISSING [AFTER T 1]. T2

IGNORED.

RIGHT PARENTHESIS MISSING FROM
SCALING FACTOR OR REPETITION
FACTOR IN PICTURE [AFTER T 1]. T2

IGNORED.

Example:

 T2

|------------|

PIC '99F(2 ';

---------->

 T1

IEL0262I S INVALID REPETITION FACTOR [AFTER
T1]. T2 IGNORED.

REPETITION FACTOR NOT AN
UNSIGNED INTEGER IN PICTURE
[AFTER T1]. T2 IGNORED.

Example:

 1.

 T2

|------------|

DCL A PIC'(+3)9'

------->

 T1

 2.

 T2

|------------|

DCL A PIC'S(A)9'

------->

 T1

IEL0263I S PICTURE INVALID [AFTER T 1]. T2

IGNORED.

NO CHARACTER FOLLOWS
REPETITION FACTOR IN PICTURE
[AFTER T1]. T2 IGNORED.

Example:

 T2

 |------------|

DCL A PIC'99(3)';

 ------>

 T1

IEL0264I S PICTURE INVALID [AFTER T 1]. T2

IGNORED.

'F' NOT FOLLOWED BY LEFT
PARENTHESIS IN PICTURE [AFTER T 1].
T2 IGNORED.

Example:

 T2

 |-------------|

DCL A PIC'99F3';

 ------>

 T1

IEL0265I S PICTURE INVALID [AFTER T 1]. T2

IGNORED.

INVALID SCALING FACTOR IN PICTURE
[AFTER T1]. T2 IGNORED.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 27

 IEL0266I S � IEL0274I S

 1.

 T2

 |-------------|

DCL A PIC'99F(\)';

 -------->

 T1

 2.

 T2

 |-------------|

DCL A PIC'99F()';

 -------->

 T1

IEL0266I S STATEMENT INVALID AFTER 'ELSE'

NONEXECUTABLE STATEMENT
FOLLOWING 'ELSE'. NULL
STATEMENT ASSUMED AS 'ELSE'
CLAUSE.

Explanation: A null statement is assumed after the
word ELSE so that the nonexecutable statement is no
longer the ELSE clause.

IEL0267I S STATEMENT INVALID AFTER 'THEN'.

NONEXECUTABLE STATEMENT
FOLLOWING 'THEN'. NULL
STATEMENT ASSUMED AS 'THEN'
CLAUSE.

Explanation: A null statement is assumed as the
THEN clause, forcing the nonexecutable statement out
of the compound IF statement.

IEL0268I S REFERENCE TO UNKNOWN LABEL
IGNORED.

LABEL REFERENCED BY 'END'
STATEMENT CANNOT BE MATCHED.
REFERENCE IGNORED.

IEL0269I U TOO MANY 'PROCEDURE' 'BEGIN'
AND 'ON' STATEMENTS.

COMPILER RESTRICTION. TOO MANY
'PROCEDURE' 'BEGIN' AND 'ON'
STATEMENTS IN THE PROGRAM.

Explanation: The implementation restriction on the
number of blocks in a compilation has been exceeded.

Programmer Response: Subdivide the program into
two or more procedures for separate compilation, or
rewrite it with less blocks.

IEL0270I U 'BEGIN' OR 'PROCEDURE' NESTING
EXCEEDS MAXIMUM.

COMPILER RESTRICTION. 'BEGIN' OR
'PROCEDURE' STATEMENT NESTING
MORE THAN MAXIMUM LEVEL.

Explanation: The implementation restriction on the
level to which blocks can be nested has been
exceeded.

Programmer Response: Reorganize the program to
contain fewer levels of nested blocks.

IEL0271I S 'THEN' ASSUMED [AFTER T].

KEYWORD 'THEN' ASSUMED [AFTER
T] IN 'IF' STATEMENT.

Example:

 1. IF A = B GOTO L;

 2. IF B&C IF D&E THEN DO;.....

Explanation: The keyword THEN is missing from or
incorrectly placed in the IF statement.

Programmer Response: Check the IF statement.

IEL0272I S INVALID 'ON' UNIT. NULL STATEMENT
ASSUMED.

INVALID ON-UNIT SPECIFIED. NULL
STATEMENT ASSUMED.

Explanation: The specified statement might be a
labeled statement, or an unlabeled statement not
allowed as an ON-unit. The null statement is assumed
as the ON-unit, and the text of the invalid ON-unit is
treated as one or more separate statements.

IEL0273I E INVALID PREFIXES ON KEYWORD
'ELSE' OR 'WHEN' OR 'OTHERWISE'.
FOR 'ELSE' PREFIXES ASSUMED TO
PRECEDE FOLLOWING STATEMENT.
FOR 'WHEN' OR 'OTHERWISE'
PREFIXES IGNORED.

Example:

IF A THEN B = 3;

L: ELSE B = 4;

Explanation: Labels and condition prefixes are
transferred to the statement following ELSE.

IEL0274I S STATEMENT INVALID AFTER 'THEN'.

STATEMENT MISSING OR INVALID
AFTER 'THEN'. NULL STATEMENT
ASSUMED AS 'THEN' CLAUSE.

Example:

IF A THEN ELSE B = 4;

28 PL/I for MVS & VM Messages and Codes

 IEL0275I S � IEL0286I S

Explanation: No unit has been provided for the THEN
clause.

IEL0275I S STATEMENT INVALID AFTER 'ELSE'.

STATEMENT MISSING OR INVALID
AFTER 'ELSE'. NULL STATEMENT
ASSUMED AS 'ELSE' CLAUSE.

Example:

IF A THEN IF B THEN C = D; ELSE ELSE E = 4;

Explanation: No unit has been provided for the ELSE
clause.

IEL0276I S 'ELSE' IN INVALID POSITION IGNORED.

KEYWORD 'ELSE' APPEARS IN
INVALID POSITION. 'ELSE' IGNORED.

Example:

IF A THEN B = C; D = E; ELSE J = K;

Programmer Response: Correct the source program.
Check that THEN clause in nested IF statements are
correct.

IEL0277I W 'SYSIN' OR 'SYSPRINT' ASSUMED
FOR I/O 'ON' CONDITION.

I/O ON CONDITION HAS NO FILE NAME
SPECIFIED. 'SYSIN' OR 'SYSPRINT'
ASSUMED.

Example:

ON ENDFILE SNAP;

ON ENDPAGE PUT PAGE;

Explanation: ENDFILE (SYSIN) is assumed for input,
and ENDPAGE (SYSPRINT) is assumed for output. All
other I/O conditions are ignored and are assumed to be
replaced by ON ERROR.

IEL0278I S INVALID CONDITION [AFTER T 1]. T2

REPLACED BY 'ERROR'.

INVALID 'ON' CONDITION NAME
[AFTER T1]. T2 REPLACED BY
'ERROR'.

Example:

ON FRED A = B;

-----> |---------|

 T1 T2

IEL0279I S REDUNDANT COMMA [AFTER T]
IGNORED.

MISSING ITEM OR REDUNDANT COMMA
IN LIST [AFTER T]. COMMA IGNORED.

Example:

PUT DATA (,B,C);

Explanation: An expected item has not been found
following a left parenthesis or comma in a list, for
example: a parameter list, a FREE statement list, or a
data list. The comma is ignored, or the whole list is
ignored if it becomes null. Further action in addition to
ignoring the null list is indicated by subsequent
messages depending on the type of list concerned.

Programmer Response: Correct the source program.
Check also for further messages.

IEL0280I E LEFT PARENTHESIS ASSUMED [AFTER
T].

Example:

DO WHILE X = Y);

Explanation: A left parenthesis has been omitted.

IEL0281I S ITERATIVE SPECIFICATION INVALID
[AFTER T1].

Example:

DO I TO 3;

Explanation: The control variable of expression 1 is
missing.

IEL0282I S EXPRESSION MISSING AFTER 'TO' OR
'BY'.

EXPRESSION FOLLOWING 'TO' OR
'BY' IS MISSING IN 'DO' STATEMENT.
NON-ITERATIVE 'DO' ASSUMED.

IEL0283I S 'RETURN' STATEMENT WITHIN
ON-UNIT IGNORED.

'RETURN' STATEMENT IS WITHIN
ON-UNIT. STATEMENT IGNORED.

Example:

ON OVERFLOW RETURN;

IEL0284I S 'IN' NOT FOLLOWED BY LEFT
PARENTHESIS.

KEYWORD 'IN' NOT FOLLOWED BY
LEFT PARENTHESIS. 'IN' IGNORED.

IEL0285I S LABEL MISSING. DUMMY ASSUMED.

LABEL MISSING FROM 'PROCEDURE'
OR 'ENTRY' STATEMENT. ONE HAS
BEEN ASSUMED.

IEL0286I S 'ENTRY' IN 'BEGIN' BLOCK IGNORED.

'ENTRY' STATEMENT IS IN A 'BEGIN'
BLOCK. STATEMENT IGNORED.

Example:

E: BEGIN;

E: ENTRY;

END E;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 29

 IEL0287I S � IEL0295I S

Explanation: The ENTRY statement and its labels are
ignored.

IEL0287I S 'IN' OPTION INVALID [AFTER T 1]. T2

IGNORED.

INVALID 'IN' OPTION [AFTER T 1] IN
'FREE' STATEMENT. T2 IGNORED.

Example:

FREE FRED IN (25 + AREA);

 ↑

 T1

 |-------------|

 T2

IEL0288I S INVALID TEXT. T IGNORED.

INVALID TEXT WITHIN STATEMENT. T
IGNORED.

Explanation: Invalid text has been found within a
statement, for example, an invalid attribute or option.
The text is ignored. Scanning of the source program
restarts at the next recognizable item.

IEL0289I S 'END' FOUND BEFORE END OF
SOURCE TEXT.

LOGICAL END OF PROGRAM FOUND
BEFORE END OF SOURCE TEXT.
STATEMENT IGNORED.

Example:

P: PROC OPTIONS (MAIN);

END; (message produced here)

GOTO LAB;

END;

Explanation: In order to check the syntax of the whole
source text, the END statement which prematurely
terminates the program has been ignored. This might
cause some extra errors in subsequent PROC, BEGIN,
or END statements.

IEL0290I S INVALID OPTION [AFTER T 1]. T2

IGNORED.

INVALID OR MULTIPLE SPECIFICATION
OF OPTION [AFTER T 1]. T2 IGNORED.

Explanation: The option might:

1. Have an invalid argument
2. Be specified more than once
3. Be spelled incorrectly
4. Have no argument

IEL0291I E INVALID SYNTAX [AFTER T] IN 'LABEL '
ATTRIBUTE.

INVALID SYNTAX FOR LABEL
CONSTANT [AFTER T 1]. T2 IGNORED.

Example:

 T2

 |----------------|

DCL LAB LABEL(LAB1,6AB2,LAB3);

 ---------->

 T1

Explanation: The compiler has detected an item in the
list of label constants which does not begin with an
alphabetic character.

Programmer Response: Correct the specification of
the label constant.

IEL0292I S LABEL LIST TOO LONG. T IGNORED.

COMPILER RESTRICTION. LABEL
PREFIX LIST TOO LONG. LABEL T HAS
BEEN IGNORED.

Explanation: The number of label prefixes plus the
total number of characters in the label list must not
exceed 254. The label prefix list is truncated at the
nearest point below the allowed maximum.

Programmer Response: The program should be
rewritten with shorter or fewer labels prefixed to this
statement. Excess labels might be transferred to an
immediately preceding null statement.

IEL0293I S INVALID PREFIX [AFTER T]. T
IGNORED.

INVALID CONDITION PREFIX [AFTER T].
T IGNORED.

Example:

(DUBRG) PROC1: PROCEDURE;

Explanation: An invalid condition prefix is specified.

IEL0294I E T FOLLOWS LABEL BUT IS ACCEPTED.

CONDITION PREFIX T FOLLOWS LABEL
BUT IS ACCEPTED.

Example:

L: (FOFL): A = B;

Explanation: Condition prefix lists should precede any
statement label lists. However, this compiler allows
condition prefixes to follow any statement labels.

IEL0295I S T FOLLOWS LABEL AND IS IGNORED.

'CHECK' OR 'NOCHECK' CONDITION
PREFIX FOLLOWS LABEL. T IGNORED.

Example:

30 PL/I for MVS & VM Messages and Codes

 IEL0296I E � IEL0306I S

L: (CHECK(A),FOFL) : A = B;

 |-------|

 T

Explanation: The check list should precede a label.
The syntax of the CHECK condition is still analyzed at
compile time; however, the CHECK condition is no
longer supported and is always disabled at run time.

IEL0296I E COLON ASSUMED [AFTER T].

COLON ASSUMED AFTER T.
PARENTHESIZED ITEM ASSUMED TO
BE CONDITION PREFIX.

Example:

(FIXEDOVERFLOW) A = B\C;

IEL0297I S ARGUMENT LIST INVALID [AFTER T 1].
T2 IGNORED.

ARGUMENT LIST MISSING OR INVALID
[AFTER T1]. T2 IGNORED.

Example:

READ FILE(F) INTO (3);

 -------------↑

 T1

 |-------|

 T2

IEL0298I E CONDITION PREFIX INVALID.

CONDITION PREFIX INVALID ON THIS
STATEMENT. PREFIX LIST IGNORED.

Explanation: Condition prefix lists are invalid on
ENTRY, DECLARE, DEFAULT, and FORMAT
statements.

IEL0299I S FACTORING INVALID [AFTER T].

FACTORING SPECIFIED IN 'ALLOCATE '
STATEMENT [AFTER T]. TEXT
IGNORED TO NEXT SEMICOLON.

Explanation: No factoring of parentheses or factored
attributes are allowed in an ALLOCATE statement. The
ALLOCATE statement is ignored and a null statement is
assumed.

IEL0300I S 'INITIAL' FACTORING LEVEL [AFTER T]
EXCEEDS N.

COMPILER RESTRICTION. FACTORING
LEVEL [AFTER T] IN 'INITIAL'
EXCEEDS N. ATTRIBUTE IGNORED.

IEL0301I S SIGN IN T IGNORED.

SIGN IN STRUCTURE LEVEL NUMBER T
IGNORED.

Example:

DCL + 1 A,

 2 B,

 2 C;

Explanation: The level number in a DECLARE
statement must be an unsigned decimal integer.

IEL0302I S ZERO [AFTER T] ASSUMED TO BE ONE.

ZERO LEVEL NUMBER [AFTER T]
ASSUMED TO BE ONE.

Explanation: The level number in a DECLARE
statement must be an unsigned nonzero integer.

IEL0303I S T IN 'RETURNS' INVALID.

ATTRIBUTE T IN 'RETURNS' INVALID.
ATTRIBUTE IGNORED.

IEL0304I S INVALID SYNTAX [AFTER T 1]. T2

IGNORED.

INVALID SYNTAX IN ASSIGNMENT
STATEMENT [AFTER T 1]. T2 IGNORED.

Example:

 1.

 T2

|--------|

A + B = C;

--->

 T1

 2.

|----|

A = ;

---->

T1

IEL0305I W INVALID USE OF LISTING CONTROL
STATEMENT.

INVALID USE OF LISTING CONTROL
STATEMENT. STATEMENT NOT
IMPLEMENTED.

Explanation: The listing control statements must
appear between statements and on a separate line from
them.

IEL0306I S NO MATCHING FORMAT LIST [AFTER T].

EDIT DATA LIST HAS NO MATCHING
FORMAT LIST [AFTER T]. T FORMAT
ASSUMED.

Explanation: Edit-directed transmission statements
require format lists.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 31

 IEL0307I S � IEL0315I S

IEL0307I S INVALID SYNTAX [AFTER T 1]. T2

IGNORED.

INVALID SYNTAX IN DATA LIST [AFTER
T1]. T2 IGNORED.

Example:

GET DATA (A,B,(C(I) DO I = 1 TO 3),D);

Explanation: The data list has an item missing or has
an error in a DO-loop specification. The data list is
ignored from the invalid item.

IEL0308I S FORMAT LIST INVALID [AFTER T 1]. T2

IGNORED.

FORMAT ITEM MISSING OR INVALID
[AFTER T1]. T2 IGNORED.

Example:

PUT EDIT (C) (A(3), J(2));

Explanation: The format item has been omitted, has
an invalid argument, or is incorrectly spelled. The
invalid item is ignored, and the text is scanned for the
next item.

IEL0309I W 'FORMAT' STATEMENT HAS NO
LABEL.

Explanation: A FORMAT statement cannot be
referenced without a label.

IEL0310I S IDENTIFIER REFERENCED BY 'LEAVE'
STATEMENT CANNOT BE MATCHED.
REFERENCE IGNORED.

IDENTIFIER REFERENCED BY 'LEAVE'
STATEMENT IS EITHER MISSING OR
NOT ON A 'DO' STATEMENT.
REFERENCE IS IGNORED.

Example:

P: PROC OPTIONS(MAIN);

LAB1: DO;

LEAVE LAB2;

END P;

IEL0311I S COMMENT DELIMITER ASSUMED
[AFTER T].

END OF SOURCE TEXT FOUND WITHIN
A COMMENT. COMMENT DELIMITER
ASSUMED [AFTER T].

Explanation: A comment delimiter might have been
omitted, causing the latter part of the program to appear
as a comment. A comment delimiter is inserted at the
end of the last source statement.

For graphic support, a right delimiter might have been
omitted, causing the latter part of the program to appear

as a comment. A right delimiter is inserted at the end
of the last source statement.

Programmer Response: Check whether the comment
or right delimiter has been omitted or if the source
program is incomplete.

IEL0312I U NO TEXT IN PROGRAM.

Example:

\PROCESS A,X;

/\ PROGRAM STARTS HERE \/
...

Explanation: The first comment delimiter is in
positions 1 and 2 of the record following the PROCESS
statement, and is interpreted as an end-of-file delimiter
for the input to the compiler. The compiler has not
received any source statements to compile into an
object module. Reasons for this include the error
shown above, control statements out of sequence, and
so on.

IEL0313I S INVALID KEYWORD [AFTER T 1]. T2

IGNORED.

INVALID KEYWORD [AFTER T 1] IN
REPETITIVE SPECIFICATION. T2

IGNORED.

Example:

PUT LIST((A(I) DO I = 3 IF A > B));

 ↑

 T1

 |---------------|

 T2

IEL0314I S END OF SOURCE TEXT FOUND. T
IGNORED.

END OF SOURCE TEXT FOUND BEFORE
END OF STATEMENT. T IGNORED.

Example:

 1. DCL A FIXED, B FLOAT, C STATIC

(end of file)

 2. A = B; C = D + (end of file)

Explanation: This can happen in addition to “end of
source text found before logical end of program”.

IEL0315I S LABEL ON 'ON' UNIT IGNORED.

'ON' UNITS CANNOT BE LABELED.
LABEL IGNORED.

Example:

ON OFL L: GOTO LAB;

The label L is invalid.

32 PL/I for MVS & VM Messages and Codes

 IEL0316I S � IEL0326I S

IEL0316I S SEMICOLON ASSUMED [AFTER T].

END OF STATEMENT ASSUMED [AFTER
T]. TEXT IGNORED TO NEXT
SEMICOLON.

Example:

DELAY (25) CALL SUBRTN;

Explanation: A semicolon has not been found where
expected after a syntactically correct statement (after
the (25) in the above example), so one is assumed.

IEL0317I S ATTRIBUTE INVALID [AFTER T 1]. T2

IGNORED.

INVALID ATTRIBUTE SPECIFICATION
[AFTER T1]. T2 IGNORED.

Example:

 T2

 |---------|

DCL JOE FOXED;

------->

 T1

IEL0318I S 'DO' IN 'ON-UNIT' REPLACED BY
'BEGIN'.

'DO' STATEMENT IS INVALID IN 'ON'
UNIT. REPLACED BY 'BEGIN'.

Example:

ON OFL DO;

PUT SKIP;

END;

Explanation: The only valid ON-units are single
statements or begin-blocks.

IEL0319I S MULTIPLE USE OF OPTION. T
IGNORED.

STATEMENT USES AN OPTION MORE
THAN ONCE. T IGNORED.

Example:

 T

 |--------|

DISPLAY(A) EVENT(B) EVENT(C) REPLY(R);

IEL0320I S NO 'REPLY' OPTION. TEXT [AFTER T]
IGNORED.

'DISPLAY' STATEMENT HAS NO
'REPLY' OPTION. TEXT [AFTER T]
IGNORED.

Example:

DISPLAY ('HELP') EVENT (E);

 |--------------|

 T

IEL0321I E LEFT PARENTHESIS ASSUMED BEFORE
EXPRESSION.

MISSING LEFT PARENTHESIS
ASSUMED BEFORE EXPRESSION IN
'DELAY' OR 'DISPLAY' STATEMENT.

Example:

DISPLAY MESSAGE);

IEL0322I S INVALID FORMAT ITEM [AFTER T 1]. T2

IGNORED.

INVALID SPECIFICATION IN FORMAT
ITEM [AFTER T 1]. T2 IGNORED.

IEL0323I E RIGHT PARENTHESIS ASSUMED [AFTER
T].

REPETITIVE SPECIFICATION ENDING
AT T IN DATA LIST NOT FOLLOWED BY
RIGHT PARENTHESIS. ONE HAS BEEN
ASSUMED.

Example:

PUT EDIT ((A(I) DO I = 1 TO 3 (F(3));

 ↑

Missing right parenthesis assumed to be here.

Explanation: Repetitive specifications in data lists
must be enclosed in brackets.

IEL0324I S NESTING LEVEL EXCEEDS N [AFTER T].

COMPILER RESTRICTION. LEVEL OF
NESTING EXCEEDS N IN DATA LIST
[AFTER T]. STATEMENT IGNORED.

Explanation: If there are no redundant brackets,
rewrite the statement within the implementation limits.

IEL0325I S INVALID SYNTAX IN 'CALL '
STATEMENT.

INVALID SYNTAX IN 'CALL '
STATEMENT. STATEMENT IGNORED.

Example:

CALL (A,B);

IEL0326I S 'ENTRY' AND LABEL INSIDE 'DO'
IGNORED.

'ENTRY' STATEMENT AND LABEL
INSIDE ITERATIVE 'DO' IGNORED.

Example:

DO I = 1 TO 3;

A(I) = B(I);

E: ENTRY;

A(I) = C(I);

END;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 33

 IEL0327I S � IEL0334I S

Explanation: Because the label is ignored, calls to it
will be unresolved.

IEL0327I S INVALID SYNTAX. T IGNORED.

STATEMENT BEGINS WITH INVALID
SYNTAX. T IGNORED.

Example:

 1. 13 14) \ X¬ |);

No identifier found in this statement.

 2. IF A ,GOTO LAB;

 ↑

'THEN' assumed here

“,GOTO LAB;” ignored since error follows a fix.

Explanation: Either the statement type could not be
identified, or, due to fixing an error in the previous
statement, recovery was not attempted from the error in
the current statement.

IEL0328I S INVALID OPTION [AFTER T]. T
IGNORED.

INVALID OPTION [AFTER T] IN
'PROCEDURE' 'BEGIN' OR 'ENTRY'
STATEMENT. T IGNORED.

Example:

 1. P: PROC MAIN; /\ invalid \/

 2. B: BEGIN (A,B); /\ invalid \/

 3. P: PROC EXT('P32WZ') OPTIONS(ASM) /\ invalid \/

IEL0329I S NESTING LEVEL EXCEEDS N [AFTER T].

COMPILER RESTRICTION. LEVEL OF
NESTING EXCEEDS N IN FORMAT LIST
[AFTER T]. STATEMENT IGNORED.

Programmer Response: If there are no redundant
brackets, rewrite the statement within the
implementation limits.

IEL0330I S NO '=' [AFTER T1]. T2 IGNORED.

NO '=' [AFTER T 1] IN REPETITIVE
SPECIFICATION. T2 IGNORED.

Example:

PUT LIST ((A(I) DO I TO N));

 ↑

 T1

 |--------|

 T2

IEL0331I S INVALID CONTROL VARIABLE [AFTER
T1]. T2 IGNORED.

INVALID CONTROL VARIABLE [AFTER
T1] IN REPETITIVE SPECIFICATION. T 2

IGNORED.

Example:

PUT LIST ((A(I) DO 3 TO 4));

 ↑

 T1

 |--------|

 T2

IEL0332I S PARENTHESIS NESTING LEVEL
EXCEEDS N [AFTER T].

COMPILER RESTRICTION. LEVEL OF
PARENTHESIS NESTING GREATER
THAN N [AFTER T]. STATEMENT
IGNORED.

Example:

A(B(C(__________(A3(B3

 ↑

 T

IEL0333I U STATEMENT NESTING LIMIT
EXCEEDED.

COMPILER RESTRICTION. NESTING
LIMIT OF 'PROCEDURE'|
'BEGIN'|'IF'|'DO'|'SELECT'
STATEMENT HAS BEEN EXCEEDED.
PROCESSING TERMINATED.

Explanation: The stack containing PROCEDURE,
BEGIN, IF, DO, and SELECT statements and their
labels has overflowed.

Programmer Response: Either reduce the number or
length of the labels on these statements or restructure
the program to reduce the depth of nesting.

IEL0334I S OPTION(S) T MISSING FROM
STATEMENT.

OPTION(S) T MISSING FROM RECORD
I/O STATEMENT. STATEMENT
IGNORED.

Example:

READ FILE(F) KEYTO(K);

(INTO option missing)

WRITE FILE(F);

(FROM option missing)

Programmer Response: Ensure that a correct set of
options is specified for this statement.

34 PL/I for MVS & VM Messages and Codes

 IEL0335I S � IEL0346I S

IEL0335I S T IN 'OPTIONS' LIST IGNORED.

INVALID ITEM IN 'OPTIONS' LIST. T
IGNORED.

Example:

1. P: PROC OPTIONS(NOAN);

2. P: PROC OPTIONS (NOMAPIN(3));

Programmer Response: Check the list of valid
options and their specification.

IEL0336I S VARIABLE MISSING FROM 'LOCATE'.

VARIABLE MISSING FROM 'LOCATE'
STATEMENT. STATEMENT IGNORED.

IEL0337I E COLON ASSUMED [AFTER T].

CONDITION PREFIX NOT FOLLOWED
BY COLON. COLON ASSUMED [AFTER
T].

IEL0338I S MULTIPLE 'TO', OR 'BY', OR
'REPEAT' [AFTER T1]. T2 IGNORED.

MULTIPLE 'TO', OR 'BY', OR
'REPEAT' [AFTER T1]. IN REPETITIVE
SPECIFICATION T2 IGNORED.

IEL0339I S FILE OPTION MISSING. T IGNORED.

MISSING FILE OPTION OR REDUNDANT
COMMA IN 'OPEN' OR 'CLOSE'
STATEMENT. T IGNORED.

Example:

OPEN FILE(F2), FILE(F3) STREAM, OUTPUT;

 |----|

 T

IEL0340I S INVALID SYNTAX [AFTER T 1]. T2

IGNORED.

INVALID SYNTAX IN 'ENVIRONMENT'
OPTION [AFTER T1]. T2 IGNORED.

Example:

DCL JOB ENV(REROAD, HIGHINDEX(2741));

 ↑ ↑

 error error

Explanation: Possible causes for this are:

1. An invalid keyword, or keyword subset has been
used (only LEAVE and REREAD are valid in the
CLOSE statement).

2. An option has an incorrect or missing argument.

IEL0341I S INVALID ITEM [AFTER T 1]. T2 IGNORED.

INVALID ITEM IN PARAMETER LIST
[AFTER T1]. T2 IGNORED.

Example:

 T2

 |---|

P: PROC(P1, 3\P2);

-----------↑

 T1

END P;

IEL0342I S INVALID OPTION IN [AFTER T]. T
IGNORED.

INVALID OPTION IN 'DEFAULT'
STATEMENT [AFTER T]. T IGNORED.

Example:

DEFAULT LIST(A:B) FIXED;

Explanation: The only valid options of the DEFAULT
statement are RANGE and DESCRIPTORS.

IEL0343I S INVALID IDENTIFIER AFTER [AFTER T 1].
T2 IGNORED.

INVALID IDENTIFIER IN 'RANGE'
SPECIFICATION.

Example:

DEFAULT RANGE (A:BC) BINARY;

Explanation: The syntax rules for the RANGE option
of the DEFAULT statement are given in the PL/I for
MVS & VM Language Reference.

IEL0344I S INVALID IDENTIFIER [AFTER T 1]. T2

IGNORED.

INVALID IDENTIFIER [AFTER T 1] IN
'GENERIC' SPECIFICATION. T 2

IGNORED.

Explanation: The syntax rules for the GENERIC
attribute are given in the PL/I for MVS & VM Language
Reference.

IEL0345I S INVALID EXPRESSION IN 'POSITION'
ATTRIBUTE. 'POS()' IGNORED.

INVALID EXPRESSION IN 'POSITION'
ATTRIBUTE. T IGNORED.

Example:

DCL P1 CHAR(8),

P2 CHAR(4) DEF P1 POS();

IEL0346I S INVALID IDENTIFIER [AFTER T 1]. T2

IGNORED.

INVALID IDENTIFIER [AFTER T 1] IN
NAME LIST. T2 IGNORED.

Example:

ON CHECK(A,3) GOTO LAB;

 ↑↑

 T1T2

 Chapter 1. Compile-Time and Macro Preprocessor Messages 35

 IEL0347I S � IEL0355I S

IEL0347I S INVALID KEYWORD. T IGNORED.

INVALID KEYWORD IN ATTRIBUTE
SPECIFICATION IN 'DEFAULT'
STATEMENT. T IGNORED.

Example:

DEFAULT RANGE(A:B) FIXED READ;

Explanation: The syntax rules for the DEFAULT
statement are given in the PL/I for MVS & VM
Language Reference.

IEL0348I S 'WHEN' OPTION MISSING [AFTER T 1].
T2 IGNORED.

'WHEN' OPTION MISSING [AFTER T 1]
IN 'GENERIC' SPECIFICATION. T2

IGNORED.

Example:

DCL E ENTRY GENERIC(E1 IF (FLOAT));

 __________↑

 T1

 |-------------|

 T2

Explanation: The rules for the GENERIC attribute are
given in the PL/I for MVS & VM Language Reference.

IEL0349I S INVALID EXPRESSION [AFTER T 1]. T2

REPLACED BY 10.

INVALID EXPRESSION [AFTER T 1] IN
DIMENSION SPECIFICATION. T2

REPLACED BY 10.

Example:

DCL A(P + Q,P - Q,P/+-):

 ------> ↑

 T1 T2

 |--| |--|

Explanation: The erroneous expression is replaced to
ensure that the required number of array dimensions is
maintained. Subsequent subscripted references to the
array will be correct if this number of dimensions is
used.

IEL0350I S INVALID OPTION [AFTER T 1]. T2

IGNORED.

INVALID OPTION IN 'GET' OR 'PUT'
STATEMENT [AFTER T 1]. T2 IGNORED.

Example:

PUT LIST(A) TWICE;

----------↑ |----|

 T1 T2

GET PAGE DATA(D);

--↑ |--|

 T1 T2

Explanation: The option is invalid or inapplicable to
this type of statement.

IEL0351I S EXPRESSION INVALID OR MISSING.

EXPRESSION INVALID OR MISSING IN
'DELAY' OR 'DISPLAY' STATEMENT.
STATEMENT IGNORED.

Example:

 1. DELAY;

 2. DISPLAY) ++;

Explanation: If an erroneous expression causes this
message to be produced, it will also be indicated by a
separate message.

IEL0352I S INVALID OPTION [AFTER T 1]. T2

IGNORED.

INVALID SPECIFICATION OF OPTION
[AFTER T1]. T2 IGNORED.

IEL0353I E COMMA ASSUMED [AFTER T].

CONSTANT FOUND IN ATTRIBUTE LIST.
COMMA ASSUMED [AFTER T].

Example:

DCL 1 STRUCT,

2 FRED (comma missing here)

3 JOE FLOAT;

Explanation: This error, and its correction by the
compiler, can only occur where structure levels are
used in a DECLARE statement.

IEL0354I S NO IDENTIFIER [AFTER T 1]. T2

IGNORED.

'DECLARE' 'DEFAULT' OR
'ALLOCATE ' DOES NOT HAVE AN
IDENTIFIER [AFTER T 1]. T2 IGNORED.

Example:

DCL 1 J, 2 + FIXED, 2 F FLOAT;

 ------↑ |

 T1 |

 |---------|

 T2

IEL0355I S DATA LIST MISSING [AFTER T].

DATA LIST MISSING [AFTER T].
STATEMENT IGNORED.

Example:

PUT EDIT SKIP(3);

--------↑

 T

Explanation: Only data-directed output statements
can be used without a data list.

36 PL/I for MVS & VM Messages and Codes

 IEL0356I S � IEL0365I S

IEL0356I S INVALID IDENTIFIER [AFTER T 1]. T2

IGNORED.

INVALID IDENTIFIER [AFTER T 1] IN
'FREE' STATEMENT. T2 IGNORED.

Example:

FREE A,B, (C.D) IN (AREA);

 ---↑

 T1

 |------|

 T2

IEL0357I W TOO FEW PARENTHESES FOR TEXT
[AFTER T] TO BE 'DO' SPECIFICATION.

DATA LIST CONTAINS TOO FEW
PARENTHESES FOR TEXT [AFTER T]
TO BE REPETITIVE SPECIFICATION.
ASSUMED TO BE DATA LIST ITEMS.

Example:

PUT DATA (A(I) DO I = 3 TO 4);

should be:

PUT DATA ((A(I) DO I = 3 TO 4));

but is assumed to be:

PUT DATA (A(I), DO...etc.,

or

Example:

PUT LIST (((A(I,J) DO I = 1 TO 2)

DO J = 3 TO 4));

Explanation: A repetitive specification must leave
extra brackets for each do-group.

IEL0358I S NO EXPRESSION [AFTER T 1]. T2

ASSUMED.

EXPRESSION MISSING FROM FORMAT
ITEM [AFTER T 1]. T2 ASSUMED.

Example:

PUT EDIT (A) (F(3),X);

--------------------↑

 T1

IEL0359I S PREFIX OPTIONS CONFLICT.

PREFIX OPTIONS CONFLICT. THE
DISABLING PREFIX HAS BEEN
ASSUMED.

Example:

(CONV,OFL,NOCONV): A = B + C;

IEL0360I S NO EXPRESSION [AFTER T].

EXPRESSION MISSING FROM 'A'
FORMAT ITEM [AFTER T]. 'ERROR'
CONDITION WILL BE RAISED ON
EXECUTION.

Explanation: On input, an edit-directed A-format item
must specify the number of characters to be read.

IEL0361I S WRONG NUMBER OF ARGUMENTS
[AFTER T1]. T2 IGNORED.

WRONG NUMBER OF ARGUMENTS IN
'FORMAT' ITEM [AFTER T 1]. T2

IGNORED.

Example:

PUT EDIT (A) (F(A,B,3,4), E(3));

IEL0362I E COMMA ASSUMED [AFTER T].

Example:

PUT EDIT (A) (B,A X(2));

Explanation: A comma is assumed wherever the
syntax of a statement requires one in order to be valid.

IEL0363I S PICTURE INVALID [AFTER T]. T
IGNORED.

CHARACTER SPECIFICATION [AFTER T]
IN PICTURE IS INVALID IN COMPLEX
FORMAT ITEM. T IGNORED.

Example:

PUT EDIT (A) (C(F(3),P'99A'));

IEL0364I E INVALID SYNTAX [AFTER T].

INVALID SYNTAX IN LISTING CONTROL
STATEMENT [AFTER T]. TEXT
IGNORED TO NEXT SEMICOLON.

Example:

%SKIP(1

-------↑

 T

 A=B;

IEL0365I S INVALID SYNTAX [AFTER T].

INVALID SYNTAX IN 'DECLARE' OR
'DEFAULT' STATEMENT [AFTER T].
STATEMENT IGNORED.

Explanation: A statement beginning with either
“DCL(...” or “DEFAULT(...” that is not a DECLARE or
DEFAULT statement has been encountered and cannot
be compiled.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 37

 IEL0366I W � IEL0377I W

Programmer Response: Replace the identifier DCL
(or DECLARE) or DEFAULT with an identifier that is not
a keyword, and recompile the program.

IEL0366I W STATEMENT NOT SUPPORTED.

STATEMENT IS NOT SUPPORTED AND
IS IGNORED.

Example:

HALT;

Explanation: The PL/I statements CHECK,
NOCHECK, FLOW, NOFLOW, and HALT are not
supported by the compiler and are ignored if they
appear in the source program.

IEL0367I W INVALID SYNTAX AFTER T.
STATEMENT NOT SUPPORTED.

INVALID SYNTAX AFTER T.
STATEMENT IS NOT SUPPORTED AND
IS IGNORED.

Example:

CHECK(A,2,B);

Explanation: The PL/I statements CHECK and
NOCHECK are not recognized by the compiler.

IEL0368I W OPTION T NOT SUPPORTED.

OPTION T NOT SUPPORTED.
STATEMENT IGNORED.

Example:

PUT ALL;

Explanation: The ALL, FLOW, and SNAP options of
the PUT statement are not recognized by the compiler.

IEL0370I S DATA LIST INVALID [AFTER T 1]. T2

IGNORED.

INVALID USE OF REPETITIVE
SPECIFICATION IN DATA LIST FOR
'GET' STATEMENT [AFTER T 1]. T2

IGNORED.

Explanation: A repetitive specification is not allowed
in a GET DATA statement.

IEL0371I S FORMAT LIST INVALID [AFTER T].

FORMAT LIST MISSING OR INVALID
AFTER T IN 'FORMAT' STATEMENT.
'A' FORMAT ASSUMED.

IEL0372I W INVALID CARRIAGE CONTROL
CHARACTER T.

CARRIAGE CONTROL CHARACTER T IS
INVALID. BLANK ASSUMED FOR
CHARACTER.

Explanation: An invalid ANS print control character
has been specified in a source record associated with
the given statement. The permissible characters are:
blank, 0, -, +, and 1.

IEL0373I S PICTURE T EXCEEDS MAXIMUM
LENGTH.

COMPILER RESTRICTION. 'PICTURE'
SPECIFICATION EXCEEDS MAXIMUM
LENGTH. 'PICTURE' SPECIFICATION T
IGNORED.

Example:

DCL PICTUREA PIC'(6ðð)X',

 PICTUREB PIC'(255)9V(2)9';

Explanation: The maximum length of a character
string PICTURE variable is 511 characters. The
maximum length of a numeric PICTURE variable is 256
characters including insertion characters.

IEL0374I I TOO MANY STATEMENTS IN THIS
RECORD FOR CORRECT NUMBERING.

LINE CONTAINS MORE THAN 30
STATEMENTS. NUMBER OF ALL
FOLLOWING STATEMENTS IN LINE SET
TO CONSTANT VALUE.

Explanation: The constant value set for statements
that cannot be individually numbered is N + 1.

IEL0375I E FACTOR NESTING LEVEL EXCEEDS
MAXIMUM AFTER T. T IGNORED.

COMPILER RESTRICTION. MAXIMUM
FACTOR DEPTH EXCEEDED AFTER T.
T IGNORED.

Explanation: The depth of factorization used in this
statement has exceeded the maximum allowed by the
compiler.

IEL0376I I 'TASK' SPECIFIED. PROCEDURE
ASSUMED REENTRANT.

'TASK' OPTION SPECIFIED.
PROCEDURE ASSUMED TO BE
REENTRANT.

Explanation: The compiler does not generate special
code for the TASK option, but as tasking procedures
must normally be reentrant, the REENTRANT option is
assumed.

IEL0377I W BLANK ASSUMED [AFTER T].

NO BLANK BETWEEN KEYWORD AND
FOLLOWING STRING. BLANK
ASSUMED [AFTER T].

Example:

38 PL/I for MVS & VM Messages and Codes

 IEL0378I I � IEL0385I W

DO I = 1 TO'3';

IEL0378I I NONINCREASING RECORD SEQUENCE
NUMBER FOLLOWS.

NONINCREASING RECORD SEQUENCE
NUMBER FOLLOWS THIS STATEMENT.
LINE NUMBERS MODIFIED.

Example:
/\ NUMBER OPTION REQUIRED IN THE PROCESS STATEMENT \/

 TEST: PROC OPTIONS(MAIN); ððð2ð

A = B; ððð3ð

 ððð5ð

1ððð4ð END TEST; ððð4ð

Explanation: The compiler checks the sequence
number given in the sequence number field of each
source statement record. If the number is equal to or
less than the preceding number, the number in the
sequence number field is increased by 100000 for the
purposes of the number used for the GONUMBER
compile-time option. The sequence number quoted in
the message refers to the record in which the latest PL/I
statement began. Thus, in the example above,
although the message would refer to record number 4,
the record number actually quoted in the message
would be '2'.

IEL0380I S 'LIKE' IGNORED.

'LIKE' IS INVALID IN ENTRY
PARAMETER DESCRIPTOR LIST AND IS
IGNORED.

Example:

DCL TEST1 ENTRY (LIKE TEST) EXTERNAL;

IEL0381I E INVALID 'INITIAL' ATTRIBUTE [AFTER
T].

INVALID SPECIFICATION OF 'INITIAL'
ATTRIBUTE [AFTER T]. ATTRIBUTE
IGNORED.

Example:

DCL A(4) FIXED INIT (+1,+2,+3,+X);

 -------------------------->|

 T

Explanation: Invalid syntax has been detected in the
specification of a constant, expression, or function
reference in the INITIAL attribute. Thus, in the above
example, an invalid arithmetic constant X would be
diagnosed.

IEL0382I E INVALID OPTION AFTER T 1.

INVALID OPTION AFTER T 1 IN RECORD
I/O STATEMENT. OPTION T2 ASSUMED.

Example:

WRITE FILE (F) FROM (CARD) KEY (NUM);

 -----------↑

 T1

T2 = KEYFROM

Explanation: An inappropriate KEY, KEYTO, or
KEYFROM, option has been specified for this RECORD
I/O statement.

IEL0383I W LINE NUMBER EXCEEDS N.

MAXIMUM LINE NUMBER EXCEEDED.
LINE NUMBERS OF FOLLOWING
RECORDS SET TO N.

Explanation: The NUMBER compile-time option has
been specified, and the compiler has detected more
than 1339 records specifying nonincreasing sequence
fields. Consequently, it has attempted to generate a
line number greater than 134,000,000, which is the
maximum possible value. The line number for each of
the subsequent records will be set to this maximum
value.

Programmer Response: Ensure that the source
program has increasing sequence fields.

IEL0384I E ENVIRONMENT OPTION [AFTER T 1] IS
NOT SUPPORTED. T2 IGNORED.

ENVIRONMENT OPTION [AFTER T 1] NOT
SUPPORTED. T2 IGNORED.

Example:

DCL F FILE RECORD INPUT ENV(MEDIUM(SYSIPT));

Explanation: In the example shown, the MEDIUM
option is an environment option supported by the DOS
PL/I optimizing compiler, and its presence suggests that
the compiler has been used with this program at some
time. The PL/I compiler does not support MEDIUM as
an environment option. When using this compiler, it is
not necessary to specify logical (or physical) device
names at the time of compilation.

Programmer Response: Remove the environment
option denoted by T2 in the message, to avoid
messages in subsequent compilations. Support the
function required by using the appropriate job control
language statements if necessary.

IEL0385I W N EXTRA 'END' STATEMENT(S)
ASSUMED.

MULTIPLE CLOSURE OF BLOCK. N
EXTRA 'END' STATEMENTS(S)
ASSUMED.

Example:

A:PROC;

B:BEGIN;

C:DO;

/\PROCESSING\/

END A;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 39

 IEL0386I S � IEL0395I S

Explanation: END statements have been assumed for
all open blocks and groups contained within the block
being closed by the END statement referring to the
label.

Programmer Response: Ensure that you have not
unintentionally omitted any END statements.

IEL0386I S 'LEAVE' STATEMENT OUTSIDE 'DO'
GROUP.

'LEAVE' STATEMENT NOT CONTAINED
IN A 'DO' GROUP IN THE CURRENT
BLOCK. STATEMENT REPLACED BY A
'NULL' STATEMENT.

Example:

P:PROC OPTIONS(MAIN);

LEAVE;

END P;

or

P:PROC OPTIONS(MAIN);

DO;

BEGIN;

LEAVE;

END P;

Explanation: The LEAVE statement must refer to a
DO-group in the immediately enclosing block.

IEL0387I S NULL OR INVALID 'WHEN'
EXPRESSION.

NULL OR INVALID 'WHEN'
EXPRESSION. BIT CONSTANT OF
LENGTH AND VALUE ONE ASSUMED.

IEL0388I E NONEXECUTABLE UNIT FOLLOWING
'WHEN' OR 'OTHERWISE' CLAUSE.

NONEXECUTABLE UNIT FOLLOWING
'WHEN' OR 'OTHERWISE' CLAUSE.
UNIT ASSUMED TO BE IN A 'DO'
GROUP.

Example:

SELECT(I);

WHEN(1) DCL J FIXED BIN;

END;

Explanation: The unit following a WHEN or
OTHERWISE clause must be an executable unit.

IEL0389I S 'WHEN' OR 'OTHERWISE' CLAUSE
APPEARS IN AN INVALID POSITION.

'WHEN' OR 'OTHERWISE' CLAUSE
APPEARS IN AN INVALID POSITION.
CLAUSE IGNORED.

IEL0390I E MORE THAN ONE EXECUTABLE UNIT
SPECIFIED FOR 'WHEN' OR
'OTHERWISE' CLAUSE.

MORE THAN ONE EXECUTABLE UNIT
FOLLOWING 'WHEN' OR 'OTHERWISE'
CLAUSE. UNITS ASSUMED TO BE
CONTAINED IN A 'DO' GROUP.

Example:

SELECT(I);

WHEN(1) J = K;

L = M;

END;

IEL0391I S 'ENTRY' STATEMENT SPECIFIED AS
EXECUTABLE UNIT OF 'WHEN' OR
'OTHERWISE' CLAUSE.

'ENTRY' STATEMENT SPECIFIED AS
EXECUTABLE UNIT OF 'WHEN' OR
'OTHERWISE' CLAUSE. STATEMENT
IGNORED.

IEL0392I S 'SELECT' STATEMENT IS NOT
FOLLOWED BY 'END' STATEMENT OR
'WHEN' OR 'OTHERWISE' CLAUSE.

'SELECT' STATEMENT IS NOT
FOLLOWED BY 'END' STATEMENT OR
'WHEN' OR 'OTHERWISE' CLAUSE.
STATEMENT IGNORED.

IEL0393I S 'PROCEDURE' STATEMENT SPECIFIED
AS EXECUTABLE UNIT FOR 'WHEN'
OR 'OTHERWISE' CLAUSE.

'PROCEDURE' STATEMENT SPECIFIED
AS EXECUTABLE UNIT FOR 'WHEN'
OR 'OTHERWISE' CLAUSE. KEYWORD
'PROCEDURE' REPLACED BY 'BEGIN'.

IEL0394I E LINE NUMBER EXCEEDS 33,000,000.

MAXIMUM LINE NUMBER EXCEEDED.
LINE NUMBERS OF FOLLOWING
RECORDS SET TO 33,000,000.

Explanation: The NUMBER option was specified with
the COUNT or the FLOW option. With these option
combinations, the maximum number of records
specifying nonincreasing sequence fields is 329. The
compiler has detected more than this number of such
records. Consequently, the compiler attempted to
generate a line number greater than the maximum
allowed for FLOW or COUNT (33,000,000). All line
numbers for subsequent records are set to 33,000,000.

IEL0395I S INVALID CHARACTER AFTER T SET TO
A BLANK.

Explanation: An invalid character was encountered.
This character is set to a blank to allow the scan to
continue. An invalid character is any character not in
the PL/I character set [a double quote(“), a cent sign
(¢), or an exclamation point (!)]. This message might
be a failure to supply the terminal quote mark for the
string being scanned.

40 PL/I for MVS & VM Messages and Codes

 IEL0396I E � IEL0407I E

IEL0396I E AN UNSUBSCRIPTED QUALIFIED NAME
IS NOT A VALID LABEL. T IGNORED.

Explanation: A label of the form “identifier.identifier:”
has been found; such labels are invalid and ignored.

IEL0397I E REDUNDANT PARENTHESES IN DATA
LIST IGNORED.

IEL0398I W EXTRANEOUS COMMA IGNORED.

EXTRANEOUS COMMA DETECTED
AFTER 'T'. COMMA IGNORED.

Example:

DCL I,J,;

 ------↑

 T

IEL0399I E SEMICOLON ASSUMED [AFTER T].

Example:

IF X THEN GOTO Y ELSE;

 -----↑

 T

IEL0400I E RIGHT PARENTHESIS ASSUMED [AFTER
T].

Example:

 1. A = B + (C\D;

 ------↑

 T

 2. DO WHILE (A>E;

 ------↑

 T

IEL0401I S MORE THAN N QUALIFICATIONS IN
NAME BEGINNING T.

COMPILER RESTRICTION. MORE THAN
N QUALIFICATIONS IN NAME
BEGINNING T. EXCESS
QUALIFICATIONS IGNORED.

Explanation: The compiler allows up to 15 levels of
structuring.

IEL0402I E LABEL VALUE LIST IGNORED.

LABEL VALUE LIST INVALID FOR
'DEFAULT' STATEMENT. LIST
IGNORED.

Example:

DEFAULT RANGE (L) LABEL (LAB1,LAB2);

This becomes:

DEFAULT RANGE (L) LABEL;

Explanation: A label value list cannot be used with
the DEFAULT statement.

IEL0403I S QUALIFICATION OR SUBSCRIPT ON
ENTRY PREFIX IGNORED.

COMPILER RESTRICTION. QUALIFIED
OR SUBSCRIPTED ENTRY PREFIX ON
'PROCEDURE' OR 'ENTRY'
STATEMENT. QUALIFICATION OR
SUBSCRIPT IGNORED.

Explanation: The compiler does not allow initialization
of aggregates of entry variables by the appearance of
the subscripted or qualified entry variable name as a
prefix to an ENTRY statement.

IEL0404I E ADJUSTABLE EXTENT INVALID IN
'RETURNS'.

ADJUSTABLE EXTENT INVALID IN
'RETURNS' SPECIFICATION. EXTENT
IGNORED.

Example:

DCL X RETURNS(CHAR(Y));

IEL0405I E ARGUMENT SPECIFICATION T
IGNORED.

INVALID ARGUMENT SPECIFICATION IN
INTERLANGUAGE OPTION. T IGNORED.

Example:

DCL E ENTRY OPTIONS (COBOL NOMAP(FRED));

Explanation: The argument should be specified as
ARGn where “n” is the number indicating the position in
the argument list of the argument to which the
interlanguage option is to apply.

IEL0406I E PARAMETER SPECIFICATION T
IGNORED.

INVALID PARAMETER SPECIFICATION
IN INTERLANGUAGE OPTION. T
IGNORED.

Example:

E: ENTRY(X) OPTIONS(FORTRAN NOMAP(Y));

Explanation: The argument to the NOMAP,
NOMAPIN, or NOMAPOUT options must be a
parameter specified in the same PROCEDURE or
ENTRY statement.

IEL0407I E INVALID OPTION T IGNORED.

INVALID OPTION T IGNORED.

Example:

DCL E ENTRY OPTIONS(MAIN);

 Chapter 1. Compile-Time and Macro Preprocessor Messages 41

 IEL0408I E � IEL0415I S

IEL0408I E CONFLICTING 'OPTIONS'
SPECIFICATION. T ASSUMED.

CONFLICTING SPECIFICATION OF
INTERLANGUAGE OPTIONS. T
ASSUMED.

Example:

DCL SUB ENTRY OPTIONS(FORTRAN, COBOL);

Explanation: Conflicting interlanguage options have
been found in an options list. The COBOL, FORTRAN,
and ASSEMBLER options conflict with each other. The
last of these to be specified is assumed.

IEL0409I E LENGTH OR PRECISION NOT IN
'VALUE' CLAUSE.

STRING OR AREA LENGTH OR
PRECISION SPECIFICATION IN
'DEFAULT' STATEMENT IS NOT IN
'VALUE' CLAUSE. RESULTS OF
EXECUTION UNDEFINED.

Example:

DEFAULT RANGE(S) CHAR(3);

Explanation: String lengths and area sizes should be
specified inside a VALUE clause.

IEL0410I E ATTRIBUTE T INVALID FOR 'DEFAULT'.

ATTRIBUTE T INVALID FOR 'DEFAULT'
STATEMENT. ATTRIBUTE IGNORED.

Example:

DEFAULT RANGE(A) ENTRY

 (ENTRY ignored)

DEFAULT RANGE(B) UNBUFFERED

 (UNBUFFERED ignored)

Explanation: Neither the RETURNS, ENTRY, and
LIKE attributes, nor file description attributes are
allowed in a DEFAULT statement.

IEL0411I U ATTRIBUTE FACTORING LEVEL
EXCEEDS N.

COMPILER RESTRICTION. ATTRIBUTE
FACTORING LEVEL GREATER THAN N.
PROCESSING TERMINATED.

Explanation: More than 15 levels of attribute
factorization have been used.

Programmer Response: Expand the declaration
containing the error into separate declarations.

IEL0412I S MORE THAN 64 PARAMETERS.

COMPILER RESTRICTION. MORE THAN
64 PARAMETERS. LIST TRUNCATED.

Explanation: More than 64 parameters have been
declared in a PROCEDURE or ENTRY statement or in
an ENTRY attribute.

IEL0413I E DECLARATION OF D IGNORED.

DECLARATION OF INTERNAL ENTRY
NOT ALLOWED. DECLARATION OF D
IGNORED.

Example:

A: PROC;

DCL B ENTRY RETURNS (FIXED);

 B: PROC ENTRY RETURNS(FIXED);

...

 END B;

...

 END A;

Explanation: An internal entry point is declared
according to its PROCEDURE or ENTRY statement. It
cannot be declared in the invoking block in a DECLARE
statement.

IEL0414I S NESTED 'LIKE' ATTRIBUTE IN
DECLARATION OF D.

'LIKE' ATTRIBUTE IN DECLARATION
OF D REFERENCES STRUCTURE
WHICH CONTAINS 'LIKE'. EXPANSION
TRUNCATED AT LATTER 'LIKE'.

Example:

DCL 1 A, 2 B, 2 C LIKE A, 2 D, 3 B;

This becomes:

DCL 1 A, 2 B, 2 C, 3 B, 3 C,

(expansion truncated here)

2 D, 3 B;

IEL0415I S 'LIKE' REFERENCE FOR D IS NOT A
STRUCTURE.

'LIKE' REFERENCE IN DECLARATION
OF D NOT A STRUCTURE. 'LIKE'
ATTRIBUTE IGNORED.

Example:

DCL A, 1 B LIKE A;

42 PL/I for MVS & VM Messages and Codes

 IEL0416I S � IEL0423I S

IEL0416I S 'LIKE' REFERENCE FOR D IS
AMBIGUOUS.

AMBIGUOUS 'LIKE' REFERENCE IN
DECLARATION OF D. UNDEFINED
SELECTION OF POSSIBILITIES MADE.

Example:

DCL 1 A, 2 B, 3 C, 4 D, 2 E, 3 C;

DCL 1 X LIKE A.C;

Explanation: An ambiguity has arisen through an
incomplete qualification, and an undefined selection of
one of the possible resolutions is made.

IEL0417I S 'LIKE' ATTRIBUTE FOR D REFERS TO
INVALID STRUCTURE.

'LIKE' ATTRIBUTE IN DECLARATION
OF D REFERENCES STRUCTURE
WHICH IS UNDECLARED OR CONTAINS
'LIKE' ATTRIBUTE. FORMER 'LIKE'
ATTRIBUTE IGNORED.

Example:

 1. X: PROC; DCL 1 A LIKE B; END;

 2. DCL 1D, 2E LIKE F;DCL 1F,2 G LIKE H;

IEL0418I U TOO MANY 'DEFAULT'
SPECIFICATIONS AND 'LIKE'
ATTRIBUTES.

COMPILER RESTRICTION. TOO MANY
DEFAULT SPECIFICATIONS AND 'LIKE'
ATTRIBUTES IN ONE BLOCK.
PROCESSING TERMINATED.

Explanation: Details of default specification within the
current scope, and LIKE attributes not yet resolved for
the current blocks, are held in a directory. The total
number of default specifications and unresolved LIKE
attributes that can be handled depends on the
environment in which the compiler is working; however,
the directory should hold a minimum of 125 entries.

Programmer Response: Reduce the number of active
default specifications and unresolved LIKE declarations
to about 100 by expanding LIKE declarations and
merging defaults.

IEL0419I S INVALID ATTRIBUTE SPECIFICATION IN
'VALUE' CLAUSE.

CONFLICTING OR REPEATED OR
INVALID ATTRIBUTE SPECIFICATION IN
'VALUE' CLAUSE. RESULTS OF
EXECUTION UNDEFINED.

Example:

DEFAULT RANGE(\) VALUE (FIXED

 CHAR(1), (BIN(17), FLOAT(3))DEC);

Explanation: When an illegal combination of attributes
appears (after any defactoring of attributes has been
preformed) the combination has no effect. Individual
attributes can still appear, however, and have effect in
other combinations. In the above example, the attribute
combinations FIXED CHAR(1) and DEC BIN(17) will be
ignored, whereas the combination DEC FLOAT(3) will
be accepted.

IEL0420I E PRECISION OR EXTENT MISSING IN
'VALUE' CLAUSE.

PRECISION OR EXTENT SPECIFICATION
MISSING FOR ATTRIBUTE IN 'VALUE'
CLAUSE. ATTRIBUTE IGNORED.

Example:

DEFAULT RANGE(I) VALUE (CHAR,FIXED BIN);

Explanation: The precision or extent specification
must be included in an attribute specification in a
VALUE clause.

IEL0421I S MULTIPLE DECLARATION OF D.

MULTIPLE DECLARATION OF D IN
SAME STRUCTURE.

Example:

DCL 1 A, 2 B, 2 C, 2 B;

Explanation: For fully qualified references to the
multiply-defined structure number, the last declaration
will be taken. Incompletely qualified references will be
further diagnosed as being ambiguous.

IEL0422I S MULTIPLE DECLARATION OF D
IGNORED.

MULTIPLE DECLARATION OF D.
DECLARATION IGNORED.

Example:

 1. DCL A, A;

 2. DCL B;

DCL B;

Explanation: For a multiply-declared item, all
declarations but one are ignored.

IEL0423I S MAJOR STRUCTURE LEVEL NUMBER
ASSUMED TO BE 1.

MAJOR STRUCTURE LEVEL NUMBER
NOT ONE. NUMBER REPLACED BY
ONE.

Example:

DCL 2 G, 3 H;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 43

 IEL0424I S � IEL0432I S

IEL0424I S LOGICAL LEVEL NUMBER OF MEMBER
REDUCED TO N.

COMPILER RESTRICTION. LOGICAL
LEVEL NUMBER OF STRUCTURE
MEMBER TOO LARGE. REDUCED TO N.

Example:

DCL 1 A, 2 B, 3 C, 4 D, 5 E, 6 F, 7 G, 8 H, 9 J,

1ð K, 11 L, 12 M, 13 N, 14 O, 15 P, 16 Q;

IEL0425I S DECLARED LEVEL NUMBER OF
MEMBER REDUCED TO N.

COMPILER RESTRICTION. DECLARED
LEVEL NUMBER OF STRUCTURE
MEMBER TOO LARGE. REDUCED TO N.

Example:

DCL 1 A, 3ðð B;

IEL0426I E INVALID REPETITION OF T.

INVALID REPETITION OF ATTRIBUTE T.
SECOND SPECIFICATION IGNORED.

Example:

DCL (X,Y) CHAR(1) CHAR(2);

 |-------|

 T

IEL0427I E ATTRIBUTE T FOR D IGNORED.

ATTRIBUTE T IN DECLARATION OF D
IGNORED.

Example:

DCL X FIXED FLOAT;

 |

 T

Explanation: A conflicting, invalid, or repeated
attribute in a declaration will be ignored. The particular
attribute that is ignored is the one that also conflicts
with the declaration of the identifier after default
attributes have been applied, or that is invalid or
repeated.

IEL0428I E AMBIGUOUS 'DEFAULT' FOR D. T
IGNORED.

AMBIGUOUS DEFAULT SPECIFICATION
IN DECLARATION OF D. ATTRIBUTE T
IGNORED.

Example:

DEFAULT RANGE(X) FLOAT;

DEFAULT RANGE(V:Z) FIXED;

DCL X;

IEL0429I E 'DEFAULT' AMBIGUOUS FOR RANGE T.
T IGNORED.

'DEFAULT' SELECTION IS AMBIGUOUS
FOR ANY CONTEXTUAL OR IMPLICIT
DECLARATION IN RANGE T.
ATTRIBUTE T IGNORED.

Example:

DEFAULT RANGE (J:R) FIXED;

DEFAULT RANGE (H:N) FLOAT;

An ambiguity exists for the range (J:N).

Explanation: The default ranges given in two or more
range specifications should not overlap. The range
given in the message is the extent of the ambiguous
range. This message is produced even when there are
no implicit declarations within the ambiguous range.

IEL0430I I NO 'MAIN' OPTION ON PROCEDURE.

NO 'MAIN' OPTION ON EXTERNAL
PROCEDURE.

Example:

P:PROC;

Explanation: An external procedure without the main
option cannot be run unless link-edited with another
external procedure with the MAIN option.

IEL0431I S PICTURE CHARACTER AFTER T
REPLACED BY T.

INVALID 'PICTURE' SPECIFICATION.
CHARACTER [AFTER T] REPLACED BY
T.

Example:

DCL P PIC'+99+';

is assumed to be:

DCL P PIC'+999';

Explanation: Depending on circumstances, an invalid
picture specification character is replaced either by “9”
when valid or by “.”.

IEL0432I S SUBFIELD OF T HAS NO DIGIT
POSITIONS.

SUBFIELD OF 'PICTURE' T HAS NO
DIGIT POSITIONS. RESULTS OF
EXECUTION ARE UNDEFINED.

Example:

DCL P PIC'$CR';

44 PL/I for MVS & VM Messages and Codes

 IEL0433I S � IEL0442I S

IEL0433I S PRECISION OF SUBFIELD OF T
EXCEEDS N.

COMPILER RESTRICTION. PRECISION
OF SUBFIELD OF PICTURE T EXCEEDS
N. PICTURE SPECIFICATION IGNORED.

Example:

 1. PIC '(16)9'

 2. PIC '9E999'

Explanation: The maximum precision of a numeric
picture is 15 for the fraction and 2 for the exponent.

IEL0434I S T TRUNCATED AT INVALID 'F'.

PICTURE T TRUNCATED AT INVALID
'F' SPECIFICATION.

Example:

DCL P PIC'9E9F(3)';

is assumed to be:

DCL P PIC '9E9';

IEL0435I S INVALID PICTURE T.

INVALID PICTURE T. PICTURE TEXT
FOLLOWING 'F' SPECIFICATION
IGNORED.

Example:

DCL P PIC '99V9F(-3)9';

is assumed to be:

DCL P PIC '99V9 F(-3)';

IEL0436I E INVALID PICTURE. T REPLACED BY
'X'.

INVALID CHARACTER PICTURE
SPECIFICATION. T REPLACED BY 'X'.

Example:

PIC '9XR'

is assumed to be:

PIC '9XX'

IEL0437I E PRECISION OF D REDUCED TO N.

COMPILER RESTRICTION. PRECISION
OF D TOO LONG. N ASSUMED FOR
PRECISION.

Example:

DCL B BINARY (32,ð),

 D DEC(17);

Explanation: The maximum precisions for arithmetic
data types are given in the language reference manual
for this compiler.

IEL0438I E INVALID 'RANGE' T IGNORED.

INVALID 'RANGE' SPECIFICATION T.
SPECIFICATION IGNORED.

Example:

DEFAULT RANGE (C:B) BIN;

IEL0439I E ZERO VALUE ASSUMED FOR SCALE
FACTOR.

COMPILER RESTRICTION. SCALE
FACTOR IS OUTSIDE VALID RANGE.
ZERO VALUE ASSUMED.

Example:

DCL F FIXED (6,-2ðð);

IEL0440I E T WITHIN 'RETURNS' IGNORED.

COMPILER RESTRICTION. ATTRIBUTE
T INVALID IN 'RETURNS'
SPECIFICATION. ATTRIBUTE IGNORED.

Example:

 1. DCL X RETURNS(RETURNS(FIXED));

 2. DCL Y RETURNS(ENTRY);

Explanation: A function procedure cannot return a
value that is an entry name.

IEL0441I S D HAS BOUND GREATER THAN N.

COMPILER RESTRICTION. D
DECLARED WITH ARRAY BOUND
GREATER THAN N. N ASSUMED FOR
BOUND.

Example:

DCL A(1ð:32768); /\ CMPAT(V1) \/

Explanation: An upper array bound cannot be greater
than 2**15-1. The program was compiled using
CMPAT(V1).

IEL0442I S D HAD BOUND LESS THAN N.

COMPILER RESTRICTION. D
DECLARED WITH ARRAY BOUND LESS
THAN N. N ASSUMED FOR BOUND.

Example:

DCL A(-4278ð:1ð); /\ CMPAT(V1) \/

Explanation: A lower array bound cannot be less than
-2**15. The program was compiled using CMPAT(V1).

 Chapter 1. Compile-Time and Macro Preprocessor Messages 45

 IEL0443I S � IEL0449I S

IEL0443I S LOWER BOUND OF D GREATER THAN
HIGHER BOUND.

LOWER BOUND GREATER THAN
HIGHER BOUND IN DECLARATION OF
D. BOUNDS INTERCHANGED.

Example:

DCL A(5:2);

Explanation: The lower bound of an array dimension
must be declared to be numerically lower than the
higher bound.

IEL0444I S D HAS MORE THAN N DIMENSIONS.

COMPILER RESTRICTION. D
DECLARED WITH NUMBER OF
DIMENSIONS GREATER THAN N.
NUMBER OF DIMENSIONS REDUCED.

Example:

DCL A(1,2,3,4,5,6,7,8,9,1ð,11,12,

 13,14,15,16);

Explanation: An array cannot be declared with more
than 15 dimensions.

IEL0445I S T NOT AN ENTRY NAME. IGNORED.

T IN 'GENERIC' SPECIFICATION IS NOT
AN ENTRY NAME AND IS IGNORED.

Example:

DCL E1 ENTRY;

DCL E2 FILE VARIABLE;

DCL F GENERIC

(E1 WHEN (FIXED), E2 WHEN(FLOAT));

Explanation: Only names of entry points can begin in
the declaration of a GENERIC entry name.

IEL0446I S REFERENCE TO T IS AMBIGUOUS.

REFERENCE TO T IN 'GENERIC'
SPECIFICATION IS AMBIGUOUS.
UNDEFINED SELECTION MADE.

Example:

DCL F GENERIC

(E1 WHEN(FIXED), E2 WHEN(FLOAT)),

E2 ENTRY,

1 X, 2 E1 ENTRY,

Y LIKE X;

Explanation: An entry expression in the declaration of
a GENERIC entry name must be an unambiguous
reference to an entry constant or variable.

IEL0447I E QUALIFICATION OF ATTRIBUTE T FOR
D INVALID.

QUALIFICATION OF ATTRIBUTE T
SPECIFIED FOR MEMBER D IN
'GENERIC' SPECIFICATION IS INVALID.
QUALIFICATION IGNORED.

Example:

DCL E1 ENTRY;

DCL E2 ENTRY;

DCL G GENERIC (E1 WHEN (BIT),

 E2 WHEN(CHAR(3)));

Explanation: Details of the attributes allowed in a
generic descriptor list are given in the language
reference manual for this compiler.

IEL0448I S ATTRIBUTE T FOR D INVALID.

INVALID ATTRIBUTE T FOR MEMBER D
IN 'GENERIC' SPECIFICATION.
ATTRIBUTE IGNORED.

Example:

DCL E1 ENTRY;

DCL E2 ENTRY;

DCL F GENERIC

(E1 WHEN (FIXED),

E2 WHEN (FLOAT,BASED));

Explanation: Only the following attributes can be used
in a generic descriptor: ALIGNED, AREA, base, BIT,
CHARACTER, ENTRY, EVENT, FILE, LABEL, mode,
OFFSET, PICTURE “picture specifications,” POINTER,
precision, scale, UNALIGNED, and VARYING. String
lengths, area sizes, and label lists are not allowed.

IEL0449I S T CONFLICTS WITH PREVIOUS
ATTRIBUTES FOR D.

ATTRIBUTE T CONFLICTS WITH
PREVIOUS ATTRIBUTES OF MEMBER D
IN 'GENERIC' SPECIFICATION.
ATTRIBUTE IGNORED.

Example:

DCL E1 ENTRY;

DCL E2 ENTRY;

DCL F GENERIC

 (E1 WHEN(FIXED),E2 WHEN(FLOAT FIXED));

Explanation: When the attributes in a generic
descriptor conflict, the second of the conflicting
attributes is ignored.

46 PL/I for MVS & VM Messages and Codes

 IEL0450I E � IEL0456I S

IEL0450I E T IN VALUE LIST OF D NOT A LABEL
CONSTANT.

T IN LABEL VALUE LIST OF LABEL
VARIABLE D IS NOT A LABEL
CONSTANT AND IS IGNORED.

Example:

DCL L LABEL (L1,L2,L3);

L1: ;

L2: ;

END L3 (is not a label)

Explanation: A label constant given in a label list
should appear in the block within the scope of the label
list.

IEL0451I S ADJUSTABLE EXTENTS FOR D INVALID
WITH 'STATIC'.

ADJUSTABLE EXTENTS INVALID WITH
'STATIC' STORAGE CLASS IN
DECLARATION OF D. N ASSUMED FOR
EXTENT.

Example:

DCL A (4:N) STATIC;

DCL C CHAR(N) STATIC;

Explanation: Static variables cannot have an
adjustable bound, extent, or length.

IEL0452I S ADJUSTABLE EXTENT INVALID FOR
PARAMETER D.

ADJUSTABLE EXTENT INVALID WITH
'PARAMETER' STORAGE CLASS IN
DECLARATION OF D. '*' ASSUMED
FOR EXTENT.

Example:

X: PROC (P);

DCL P(Y); (becomes P(\))

Explanation: A parameter cannot have an adjustable
bound, extent, or length, but it can assume that of its
argument if specified as “*.”

IEL0453I S ADJUSTABLE EXTENT INVALID FOR
BASED D.

ADJUSTABLE EXTENT INVALID WITH
'BASED' STORAGE CLASS IN
DECLARATION OF D. N ASSUMED FOR
EXTENT.

Example:

 1. DCL A(I:8) BASED;

in this case I is assumed

to be 1.

 2. DCL B(4:J) BASED;

in this case J is assumed

to be 1ð.

Explanation: Unless the REFER option is specified, a
based area cannot have an adjustable extent, and a
based string cannot have an adjustable length. If
specified, an adjustable lower bound is assumed to be
1, an adjustable upper bound is assumed to be 10, an
adjustable string length is assumed to be 1, and an
adjustable area extent is assumed to be 1000.

IEL0454I S '*' EXTENT INVALID FOR D NOT
'CONTROLLED' OR 'PARAMETER'.

'*' EXTENT SPECIFIED IN
DECLARATION OF D BUT NOT
'CONTROLLED' OR 'PARAMETER'. N
ASSUMED FOR EXTENT.

Example:

DCL A (\) STATIC;

Explanation: An “*” bound, extent, or length can only
be used to declare an adjustable bound, extent, or
length for a controlled variable or a parameter.

IEL0455I S 'REFER' EXTENT INVALID FOR
NON-BASED D.

'REFER' EXTENT SPECIFIED IN
DECLARATION OF D BUT NOT IN
'BASED' STRUCTURE. N ASSUMED
FOR EXTENT.

Example:

 1. DCL 1 A, 2 B, 2 C(X REFER(B):8);

 2. DCL 1 D, 2 E, 2 F(4:Y REFER (E));

Explanation: The REFER option can only be used in
the declaration of a based structure that contains an
adjustable array dimension. If REFER is used in this
way for the lower bound, 1 is assumed; if it is used for
the upper bound, 10 is assumed.

IEL0456I S AMBIGUOUS 'REFER' ITEM T FOR D.

'REFER' ITEM T FOR EXTENT IN
DECLARATION OF D IS AMBIGUOUS.
UNDEFINED SELECTION MADE.

Example:

DCL 1 A BASED,

2 B, 2 C, 3 B,

3 D (X REFER B:1ð);

The reference B is ambiguous.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 47

 IEL0457I W � IEL0463I S

IEL0457I W 'REFER' T FOR D MAY BE INVALID.

IF THE STRUCTURE CONTAINS
PADDING USE OF 'REFER' T FOR
EXTENT OF D WILL BE INVALID AND
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL 1 A BASED,

2 B FIXED BIN,

 2 C,

3 D FIXED DEC,

3 E (X REFER(D)) FLOAT DEC,

3 F FIXED DEC;

Explanation: Although structure A contains padding,
this message is pictured for structures that, when
mapped, do not contain padding.

IEL0458I S 'REFER' T FOR D NOT PREVIOUS BASE
ELEMENT.

'REFER' ITEM T FOR EXTENT IN
DECLARATION OF D IS NOT A
PREVIOUS SCALAR BASE ELEMENT IN
THE SAME STRUCTURE. N ASSUMED
FOR EXTENT.

Example:

 1. DCL 1 A BASED, 2 B(X REFER(C):1ð),

2 C;

-base element C follows the REFER

item.

 2. DCL 1 A BASED, 2 B, 3 C(X REFER

(B):1ð);

-B is not a base element in

structure A.

 3. DCL 1 A, 2 B, 3 C;

DCL 1 D BASED, 2 E(X REFER(C):1ð);

-C is not a base element in

structure D.

IEL0459I I D TREATED AS NOT 'CONNECTED'.

ARRAY PARAMETER D TREATED AS
NOT 'CONNECTED'. OPTIMIZATION
MAY BE INHIBITED.

Example:

P: PROC(X,Y);

DCL (X,Y CONNECTED, Z) (1ð,1ð);

 1. Z = X; (compiled as a do-group)

Z = Y; (compiled as a single move

instruction)

 2. V = X(6,3); (compiled as subscript

calculation to obtain offset)

V = Y(6,3); (offset is calculated

at compile-time, no further

calculation required)

Explanation: If the attribute CONNECTED is added to
the declaration of the array, the subscript calculations
will be optimized as shown.

IEL0460I E DEFAULT 'BUILTIN' OR 'GENERIC'
FOR D IGNORED.

DEFAULT ATTRIBUTE 'BUILTIN' OR
'GENERIC' SPECIFIED FOR D
CONFLICTS WITH USE OF IDENTIFIER
IN IMPLICIT DECLARATION.
ATTRIBUTE IGNORED.

Example:

DEFAULT RANGE (P) BUILTIN CHAR STATIC;

DCL A CHAR DEFINED (P);

IEL0461I S AGGREGATES INVALID IN GENERIC
DESCRIPTOR LIST FOR T.

COMPILER RESTRICTION.
AGGREGATES INVALID IN DESCRIPTOR
LIST FOR MEMBER T IN 'GENERIC'
SPECIFICATION. MEMBER IGNORED.

Example:

DCL (E1,E2,E3) ENTRY;

DCL G GENERIC (E1 WHEN(,(\),1),

E2 WHEN (FIXED,FLOAT),

E3 WHEN (,1,2,2));

(E2 is a valid member, E1 and E3

are ignored)

IEL0462I S INITIALIZATION INVALID FOR STATIC
LABEL D.

INITIALIZATION INVALID FOR 'STATIC'
ENTRY VARIABLE D. INITIALIZATION
IGNORED.

Example:

DCL EV ENTRY VARIABLE STATIC INIT(EV1);

IEL0463I S ENTRY NAME T INVALID IN 'GENERIC'
SPECIFICATION.

COMPILER RESTRICTION. 'BASED'
'DEFINED' OR SUBSCRIPTED ENTRY
NAME T INVALID IN 'GENERIC'
SPECIFICATION. ENTRY NAME
IGNORED.

Example:

DCL E1 ENTRY, E2 ENTRY BASED(P);

DCL G GENERIC (E1 WHEN (FIXED),

E2 WHEN (FLOAT)); (E2 ignored)

48 PL/I for MVS & VM Messages and Codes

 IEL0464I S � IEL0471I S

IEL0464I S D IS NOT 'BASED'.

D IN 'LOCATE' STATEMENT NOT
'BASED'. STATEMENT IGNORED.

Example:

P: PROC;

LOCATE FRED FILE(F);

 END P;

FRED (is not declared based)

IEL0465I S D IS NOT LEVEL ONE.

D IN 'ALLOCATE ' STATEMENT NOT
LEVEL ONE. THIS AND ANY
FOLLOWING ITEMS IGNORED.

Example:

DCL (A,1 X) CTL, 2(Y,Z)

ALLOCATE A,Y,X;

(X and Z are ignored)

Explanation: A minor structure cannot be allocated
independently of its containing level 1 structure.

IEL0466I S D IS NOT 'BASED' OR 'CONTROLLED'.

D IN 'ALLOCATE ' STATEMENT NOT
'BASED' OR 'CONTROLLED'. THIS
AND ANY FOLLOWING ITEMS IGNORED.

Example:

DCL X, (Y,Z) CTL;

ALLOCATE Y,X,Z;

(X and Z will not be allocated)

Explanation: Only based or controlled variables can
be allocated storage by means of the ALLOCATE
statement.

IEL0467I E FINAL MEMBERS MISSING FROM
STRUCTURE.

FINAL MEMBERS MISSING FROM
STRUCTURE SPECIFICATION IN
'ALLOCATE ' STATEMENT.
DECLARATION USED FOR MISSING
MEMBERS.

Example:

DCL 1 X CTL, 2 (Y,Z) CHAR(3);

ALLOCATE 1 X, 2 Y CHAR(4);

Explanation: The member 2 Z is assumed to be
included in the ALLOCATE statement with the declare
attributes CHAR(3).

IEL0468I E LEVEL NUMBER PRECEDING D
IGNORED.

Example:

DCL X CTL

ALLOCATE 1 X;

(the level '1' is ignored)

Explanation: A level number is only required in an
ALLOCATE statement for a structure where members of
that structure are specified explicitly in the statement.

IEL0469I E DIMENSIONS ATTRIBUTE MISSING FOR
D.

DIMENSIONS ATTRIBUTE MISSING FOR
STRUCTURE MEMBER D IN
'ALLOCATE ' STATEMENT. DECLARED
DIMENSIONS ASSUMED.

Example:

DCL 1 X CTL, 2 Y(1ð), 2 Z;

ALLOCATE 1 X,2 Y, 2 Z;

Explanation: Except for level 1 identifiers, those
identifiers declared with dimensions must, when given in
an ALLOCATE statement, be specified with dimensions.

IEL0470I S WRONG NUMBER OF DIMENSIONS FOR
D.

WRONG NUMBER OF DIMENSIONS FOR
D IN 'ALLOCATE ' STATEMENT.
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL X(1ð) CTL;

ALLOCATE X(5,2);

Explanation: An identifier declared with dimensions,
when given in an ALLOCATE statement, must be
specified with the same number of dimensions, although
the bounds of a particular dimension can differ from
those given in the declaration.

IEL0471I S CONFLICTING ATTRIBUTE T FOR D
IGNORED.

CONFLICTING ATTRIBUTE T FOR D IN
'ALLOCATE ' STATEMENT. ATTRIBUTE
IGNORED.

Example:

DCL X CHAR(6) CTL;

ALLOCATE X BIT(6);

Explanation: The attribute of an identifier given in an
ALLOCATE statement should not conflict with the
attribute given in the declaration of the identifier. Note
that string lengths and the upper and lower bounds of
dimensions can differ between the declaration and the
ALLOCATE statement.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 49

 IEL0472I E � IEL0480I S

IEL0472I E INVALID ATTRIBUTE T FOR D IGNORED.

INVALID ATTRIBUTE T FOR D IN
'ALLOCATE ' STATEMENT. ATTRIBUTE
IGNORED.

Explanation: Only the following attributes can be used
in an ALLOCATE statement: BIT, CHARACTER, AREA,
and INITIAL.

IEL0473I E LEVEL NUMBER FOR T REPLACED BY
ONE.

INVALID LEVEL NUMBER SPECIFIED
FOR T. LEVEL ONE ASSUMED.

Example:

ALLOCATE 2 X;

Explanation: The first identifier in an ALLOCATE
statement must be a level 1 identifier.

IEL0474I E STRUCTURING ERROR FOLLOWING D.

ERROR IN SPECIFICATION OF
STRUCTURING FOLLOWING D.
DECLARED STRUCTURING ASSUMED
FOR FINAL MEMBERS OF STRUCTURE.

Example:

DCL 1 A CTL, 2 B, 3 C CHAR(8);

ALLOCATE 1 A, 3 C CHAR(4);

 (structure member B is assumed to be included in the
ALLOCATE statement)

Explanation: If any members of a structure appear in
an ALLOCATE statement, all the members of that
structure must appear.

IEL0475I E ATTRIBUTES FOR 'BASED' VARIABLE
D IGNORED.

ATTRIBUTES FOR BASED VARIABLE D
INVALID ON 'ALLOCATE ' STATEMENT.
ATTRIBUTES IGNORED.

Example:

DCL X BASED (P);

ALLOCATE X INIT(3);

INIT(3) ignored

Explanation: Based variables cannot be given
attributes when allocated.

IEL0476I E 'SET' OR 'IN' INVALID FOR
'CONTROLLED' D.

'SET' OR 'IN' OPTION INVALID IN
'ALLOCATE ' STATEMENT FOR
'CONTROLLED' VARIABLE D. OPTION
IGNORED.

Example:

DCL X CTL, Y BASED;

ALLOCATE X IN (A); (invalid)

ALLOCATE Y IN (A); (valid)

Explanation: The object of the SET or IN options
must be a based variable.

IEL0477I E 'CHAR' 'BIT' OR 'AREA' WITHOUT
EXTENT.

'CHARACTER' OR 'BIT' OR 'AREA'
SPECIFIED WITHOUT EXTENT IN
'ALLOCATE ' STATEMENT. ATTRIBUTE
IGNORED.

Example:

DCL X CHAR(3) CTL;

ALLOCATE X CHAR;

'ALLOCATE X;' (assumed)

IEL0478I W D HAS STRING OVERLAY DEFINING.

D HAS STRING OVERLAY DEFINING
AND MAY BE INCOMPATIBLE WITH THE
PL/I F COMPILER.

Example:

DCL X(1ð) PICTURE '9999',

A(1ð) PICTURE '9' DEFINED X;

Explanation: In the above example the F compiler
would have given correspondence defining but the
compiler will give string overlay defining.

IEL0479I S STRING OR AREA SIZE REDUCED TO N.

COMPILER RESTRICTION. CHAR OR
BIT OR GRAPHIC OR AREA SIZE
REDUCED TO COMPILER MAXIMUM.

Example:

DCL A AREA(223456789ð),

B BIT (4ðððð),

 C CHAR(4ðððð);

Explanation: The maximum sizes allowed by this
compiler are 16777199 (CMPAT V1) or 2147483631
(2**31 - 1) (CMPAT V2) for an area, 32767 for
character and bit strings, and 16383 for graphic strings.
Even so, these sizes might exceed the available main
storage when the program is run.

IEL0480I S D DEFINED ON 'DEFINED' OR
'BASED'.

D IS DECLARED AS 'DEFINED' ON A
BASE WHICH ALSO HAS THE
'DEFINED' OR 'BASED' ATTRIBUTE.
'DEFINED' ATTRIBUTE IGNORED.

Example:

DCL A DEFINED B, B DEFINED C;

50 PL/I for MVS & VM Messages and Codes

 IEL0481I S � IEL0490I E

IEL0481I S D 'ISUB' 'DEFINED' ON
CROSS-SECTION.

D IS DECLARED AS 'DEFINED' WITH
AN 'ISUB' VARIABLE ON THE
CROSS-SECTION OF A BASE.
'DEFINED' ATTRIBUTE IGNORED.

Example:

DCL B(2,5), D(2,4) DEFINED B (\,1SUB);

IEL0482I S D 'DEFINED' WITH WRONG NUMBER
OF SUBSCRIPTS.

D IS DECLARED AS 'DEFINED' WITH
AN 'ISUB' VARIABLE ON A BASE WITH
THE WRONG NUMBER OF SUBSCRIPTS.
'DEFINED' ATTRIBUTE IGNORED.

Example:

DCL A(1ð) FIXED BIN(31),

B BIT(32) DEFINED A(1SUB);

IEL0483I S D 'DEFINED' WITH 'ISUB' AND
'POSITION' ATTRIBUTE.

D IS DECLARED AS 'DEFINED ' WITH
AN 'ISUB' VARIABLE AND HAS
'POSITION' ATTRIBUTE. 'DEFINED'
ATTRIBUTE IGNORED.

Example:

DCL B (1ð,1ð),

D (6) DEFINED B(1SUB,6) POS(3);

IEL0484I S MAPPING OF DEFINED ITEM D
CONFLICTS WITH BASE.

MAPPING OF ELEMENT D OF
ISUB-DEFINED ARRAY CONFLICTS
WITH THAT OF BASE. 'DEFINED'
ATTRIBUTE IGNORED.

Example:

DCL 1 B(1ð), 2 C, 3 D;

DCL 1 X(5,2) DEFINED B(1SUB + 2SUB), 2 Y, 2 Z;

IEL0485I E CONFLICT BETWEEN DEFINED ITEM D
AND BASE ATTRIBUTES IGNORED.

ATTRIBUTES OF ITEM D 'DEFINED'
WITH AN 'ISUB' VARIABLE CONFLICT
WITH THOSE OF BASE. CONFLICT
IGNORED.

IEL0486I E SIMPLE DEFINING ASSUMED AS
ATTRIBUTES OF D CONFLICT WITH
BASE.

ATTRIBUTES OF 'DEFINED' ITEM D
CONFLICT WITH THOSE OF BASE.
SIMPLE DEFINING ASSUMED.

Example:

DCL B POINTER,

A FIXED BINARY(31,ð) DEFINED B;

Explanation: Simple defining is assumed only if the
two items have matching size, alignment, and
dimensionality. String lengths or bounds are ignored.

IEL0487I S D 'DEFINED' ON UNCONNECTED
AGGREGATE.

D IS STRING OVERLAY 'DEFINED' ON
AN AGGREGATE WHICH IS NOT
'CONNECTED'. 'DEFINED' ATTRIBUTE
IGNORED.

Example:

DCL 1 B(1ð),

2 C CHAR(2),

 2 F,

A CHAR(2ð) DEFINED C;

Explanation: An aggregate used as the base in string
overlay defining must occupy a contiguous area of
storage.

IEL0488I S ATTRIBUTES OF 'DEFINED' ITEM D
CONFLICT WITH BASE.

ATTRIBUTES OF 'DEFINED' ITEM D
CONFLICT WITH THOSE OF BASE.
'DEFINED' ATTRIBUTE IGNORED.

Example:

DCL A OFFSET DEFINED B,

1 B, 2 (C,D) CHAR;

Explanation: The mapping of the defined and base
items differ and the defined item is a level 1 offset.

IEL0489I S 'POSITION' VALUE FOR D LESS THAN
ONE OR EXCEEDS N.

COMPILER RESTRICTION. D IS
DECLARED WITH 'POSITION' VALUE
LESS THAN ONE OR GREATER THAN N.
'POSITION' ATTRIBUTE IGNORED.

Example:

DCL B CHAR,

A CHAR DEFINED B POS(-5);

IEL0490I E INVALID 'DEFINED' FOR D.

INVALID USE OF 'DEFINED' IN
DECLARATION OF D. COMPILER WILL
ATTEMPT TO ASSUME STRING
OVERLAY DEFINING.

Example:

DCL B CHAR(5),

D BIT(8ð) DEF(B);

 Chapter 1. Compile-Time and Macro Preprocessor Messages 51

 IEL0491I S � IEL0497I S

Explanation: If the defined and base items do not
match, both must be nonvarying, unaligned and either
picture or character or both bit strings. If these rules
are infringed, the defining will be accepted provided that
the base item occupies contiguous storage.

IEL0491I S 'DEFINED' BASE FOR D IS
AMBIGUOUS.

BASE REFERENCE OF 'DEFINED'
ATTRIBUTE IN DECLARATION OF D IS
AMBIGUOUS. UNDEFINED SELECTION
MADE.

Example:

DCL 1 A, 2 B, 3 B,

D DEFINED B;

(the identifier B is ambiguous)

IEL0492I S 'DEFINED' BASE FOR D IS NOT
ACCEPTABLE.

D IS 'DEFINED' ON A BASE WHICH IS
NOT ACCEPTABLE. 'DEFINED'
ATTRIBUTE IGNORED.

Example:

1. P: PROC;

DCL X DEF P;

 END P;

2. DCL B;

DCL A DEF B(1ðð);

IEL0493I W SIMPLE DEFINING APPLIES FOR D.

SIMPLE DEFINING APPLIES FOR D. IF
OVERLAY DEFINING REQUIRED THEN
ADD T TO DECLARATION.

Example:

DCL 1 A,

2 B(1ð) CHAR(3),

2 C(1ð) CHAR(2),

1 D DEF A,

2 E(5) CHAR(3),

2 F(5) CHAR(2);

(simple defining will be used for structure D)

Explanation: The purpose of this message is to
indicate a difference between this implementation and
that of the PL/I D and F compilers which can result in
the different mapping for the structure.

Programmer Response: The above action should be
carried out if the program was originally written for the
D or F compilers or if the program is to exchange
records to and from D or F programs, when the records
are derived from such structures and therefore require
identical mapping.

IEL0494I E STRING OVERLAY DEFINING ASSUMED
FOR D.

STRING LENGTH IN DEFINED ITEM D IS
TOO LONG FOR SIMPLE DEFINING.
STRING OVERLAY DEFINING ASSUMED.

Example:

DCL 1 A,

2 B CHAR(1),

2 C CHAR(79),

1 D DEF A,

2 E CHAR(4ð),

2 F CHAR(4ð);

Explanation: Simple defining cannot be used where
the length of the defined string is greater than the
length of the base string. In the above example, string
D.E is longer than its corresponding base string A.B.

IEL0495I E MAXIMUM LENGTHS OF DEFINED ITEM
D AND BASE DIFFER.

AREA SIZE OR MAXIMUM LENGTH OF
VARYING STRING IN SIMPLE DEFINED
ITEM D DIFFERS FROM THAT OF THE
CORRESPONDING BASE. RESULTS OF
EXECUTION UNDEFINED.

Example:

DCL 1 A, 2 B CHAR(3) VAR,

2 C CHAR(4) VAR,

1 D DEF A,

2 E CHAR(2) VAR,

2 F CHAR(3) VAR;

Explanation: If a defined item, for which simple
defining is used, is a varying string that is shorter than
the corresponding base string which is also varying, an
error can occur during the run. A reference to the
defined varying string can result in a string that is longer
than its declared maximum length.

IEL0496I S T INVALID IN 'CALL ' STATEMENT.

BUILTIN FUNCTION T INVALID IN
'CALL ' STATEMENT. STATEMENT
IGNORED.

Example:

P: PROC;

 CALL SIN(X);

 END;

IEL0497I S D INVALID IN 'FETCH' OR 'RELEASE'.

D IN 'FETCH' OR 'RELEASE'
STATEMENT IS INVALID. STATEMENT
IGNORED.

Example:

52 PL/I for MVS & VM Messages and Codes

 IEL0498I E � IEL0504I S

MAIN: PROC OPTIONS(MAIN);

DCL X ENTRY EXTERNAL;

DCL PLIDUMP BUILTIN;

 FETCH X; /\ valid \/

FETCH PLIDUMP; /\ invalid \/

FETCH INT; /\ invalid \/

INT: PROC; ... END;

Explanation: The identifier in a FETCH statement
must be the name of an external PL/I procedure or a
non-PL/I routine. Internal PL/I procedures cannot be
obtained by a FETCH statement.

IEL0498I E INVALID SUBSCRIPTED PREFIX T.

SUBSCRIPTED STATEMENT PREFIX T
IS NOT A NONSTATIC LABEL ARRAY.
PREFIX IGNORED.

Example:

DCL LS(2) LABEL STATIC;

 LS(1):; (ignored)

DCL LA(3) LABEL AUTOMATIC;

 LA(2):; (accepted)

DCL L LABEL;

 L(3):; (ignored)

IEL0499I D INITIALIZED BY PREFIX AND
DECLARATION.

LABEL VARIABLE D IS INITIALIZED BY
STATEMENT PREFIX AND BY
DECLARATION. DECLARED 'INITIAL'
IGNORED.

Example:

DCL LV(3) LABEL INIT(L1,L2,L3);

...

LV(1):L1: X = Y/Z;

IEL0500I S CONFLICT IN USE OF D AS T.

CONFLICT BETWEEN USE OF D AS T
AND ITS DECLARED ATTRIBUTES.
STATEMENT IGNORED.

Example:

DCL P EVENT;
...

CALL P;

Explanation: This message is produced when an
identifier has an explicit declaration that conflicts with its
use when the use would constitute a contextual
declaration in the absence of the explicit declaration.

IEL0501I E D HAS INVALID ATTRIBUTES. OPTION
IGNORED.

ATTRIBUTES FOR D INVALID IN
'ENVIRONMENT' OPTION. OPTION
IGNORED.

Example:

DCL F FILE ENV(RECSIZE(X) PASSWORD(Y));

DCL (X,Y) FLOAT;

Explanation: The attributes for arguments in the
ENVIRONMENT option are restricted. In the example,
the arguments, X and Y, should be declared as follows:

Example:

DCL X FIXED BIN(31,ð) STATIC;

DCL Y CHAR STATIC;

IEL0502I S USE OF D CONFLICTS WITH PREVIOUS
DECLARATION.

USE OF D AS A STATEMENT LABEL
PREFIX IS A CONFLICTING OR
MULTIPLE DECLARATION. PREFIX
IGNORED.

Example:

L1: X = 1;
...

L1: A = B;

IEL0503I E T ASSUMED TO BE EXTERNAL ENTRY.

IDENTIFIER T IS NOT DECLARED.
EXTERNAL ENTRY ASSUMED.

Example:

1. P1: PROC;

 CALL FRED;

 END;

2. P2: PROC;

BERT = FRED(6);

 END;

Explanation: In the first example above, FRED is
contextually declared BUILTIN. It is not however a
recognized built-in function. In the second example,
FRED is contextually declared BUILTIN in the absence
of an explicit or default declaration as an array.

IEL0504I S T ASSUMED TO BE AN ARRAY.

IDENTIFIER T IN 'BUILTIN' CONTEXT IS
INVALID. ASSUMED TO BE AN ARRAY.

Explanation: When a contextual declaration for an
identifier as BUILTIN conflicts with a default declaration
for the same identifier as an array, the contextual
declaration is superseded by the default declaration.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 53

 IEL0505I S � IEL0512I S

IEL0505I S CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T
IN BOUNDS SPECIFICATION. BOUNDS
OF N TO 10 ASSUMED.

Example:

DCL P, (P is float dec)

 X BASED,

A (P-> X);

IEL0506I E CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T
IN LOCATOR QUALIFICATION.
QUALIFICATION IGNORED.

Example:

DCL P FLOAT,

A BASED (P);

IEL0507I S CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T
IN ADJUSTABLE STRING OR AREA
SPECIFICATION. DEFAULT EXTENT
ASSUMED.

Example:

DCL P DECIMAL,

 X BASED,

A AREA (P-> X),

B BIT (P-> X),

C CHAR (P->X);

Explanation: The attributes assumed by default are
AREA(1000), BIT (1), and CHAR(1).

IEL0508I S CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T
IN 'DEFINED' 'POSITION' OR 'INITIAL'
ATTRIBUTE. ATTRIBUTE IGNORED.

Example:

DCL P DECIMAL,

 Q(1ð) DECIMAL,

 X BASED,

A DEFINED (Q(P->X));

Explanation: Invalid INITIAL and POSITION attributes
are ignored. The storage class AUTOMATIC is
assumed for an invalid DEFINED attribute.

IEL0509I E CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T.
CONTEXTUAL ATTRIBUTES ASSUMED.

Example:

P: PROC (F);

READ FILE (F) INTO (A);

Explanation: If an identifier is explicitly declared one
way, but is used in another way, the identifier's
attributes will be derived from how it is used, rather than
how it was declared.

IEL0510I E CONFLICT BETWEEN ATTRIBUTES OF D
AND USE AS T.

CONFLICT BETWEEN DECLARED
ATTRIBUTES OF D AND ITS USE AS T
IN 'SET' OR 'IN' OPTION. OPTION
IGNORED.

Example:

DCL X BASED,

 (A,P) DECIMAL;

ALLOCATE X IN (A) SET (P);

('ALLOCATE X;' assumed)

IEL0511I S D INVALID IN TARGET POSITION.

D IS NOT A VARIABLE AND IS IN A
TARGET POSITION. STATEMENT
IGNORED.

Example:

P: PROC;

P = 1;

Explanation: A target position can be one of the
following:

1. The left-hand side of an assignment statement
2. A DO-loop control variable
3. Data list in a GET statement
4. INTO option in a READ statement

 5. SET option
6. KEYTO option in a READ statement

 7. REPLY option

IEL0512I S T IS NOT DECLARED.

QUALIFIED NAME BEGINNING T IS NOT
DECLARED. STATEMENT IGNORED.

Example:

P: PROC;

A.B = 1;

 END;

Explanation: Structures must be explicitly declared.

54 PL/I for MVS & VM Messages and Codes

 IEL0513I S � IEL0520I S

IEL0513I S INVALID USE OF D AS 'BUILTIN'.

D IS DECLARED BUILTIN BUT IS
EITHER NOT A BUILTIN FUNCTION
NAME OR IS INVALIDLY USED WITHOUT
ARGUMENTS. STATEMENT IGNORED.

Example:

DCL E ENTRY VARIABLE,

 XYZ BUILTIN,

 SIN BUILTIN;

...

E = XYZ;

...

E = SIN;

Explanation: The identifier XYZ is not a built-in
function. The built-in function SIN is used without an
argument.

IEL0514I S D NOT LABEL KNOWN IN CURRENT
BLOCK.

IDENTIFIER D AFTER 'GOTO' IS NOT A
LABEL KNOWN IN THE CURRENT
BLOCK. STATEMENT IGNORED.

Example:

P: PROC;

 BEGIN;

L: X = 1;

 END;

GO TO P; (P is not known at this point)

GOTO L; (L is not known at this point)

 END;

IEL0515I S INVALID USE OF D AS
PSEUDO-VARIABLE.

INVALID USE OF D AS
PSEUDO-VARIABLE. STATEMENT
IGNORED.

Example:

DCL ONCHAR BUILTIN;

READ FILE (X) INTO (ONCHAR);

IEL0516I S D INVALID IN 'FROM' OPTION.

INVALID ITEM D IN 'FROM' OPTION.
STATEMENT IGNORED.

Example:

WRITE FILE (FRED) FROM (FRED);

IEL0517I S D INVALID AS 'DO' CONTROL
VARIABLE.

INVALID USE OF D AS CONTROL
VARIABLE IN ITERATIVE
SPECIFICATION. NONITERATIVE 'DO'
ASSUMED.

Example:

I: ; /\ STATEMENT LABEL CONSTANT \/

DO I = 1 TO 1ð;

 END;

IEL0518I W T IS NOT IMPLICITLY 'BUILTIN'.

T IS THE NAME OF A BUILTIN
FUNCTION BUT ITS IMPLICIT
DECLARATION DOES NOT IMPLY
'BUILTIN'.

Example:

 X = DATE;

Explanation: A built-in function that does not require
an argument must be declared BUILTIN. The
declaration can be explicit, contextual, or implicit. (A
contextual declaration is obtained by including a
nonexecuting CALL statement for the built-in function
name, and an implicit declaration is obtained by using
the built-in function name with a null argument list.)

IEL0519I S IDENTIFIER BEGINNING T AMBIGUOUS.

IDENTIFIER BEGINNING T IS AN
AMBIGUOUS REFERENCE TO A
STRUCTURE MEMBER. UNDEFINED
SELECTION MADE.

Example:

DCL 1 A, 2 B, 3 C, 2 D, 3 C;
...

A.C = 1;

Explanation: If a name is an incomplete qualification
of more than one identifier, but does not completely
qualify any identifier, it is in error.

IEL0520I S TOO MANY SUBSCRIPTS FOR D.

'ENTRY' VARIABLE 'A.B.C' HAS TOO
MANY SUBSCRIPTS. STATEMENT
IGNORED.

Example:

DCL 1 A(1ð), 2 B(3), 3 C ENTRY(FIXED,FLOAT);
...

X = B(9,2). C(5)(P);

Explanation: Subscripts in a qualified entry name
must agree in number with the subscripts given in the
declaration of the containing aggregate so that the
argument list can be correctly distinguished.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 55

 IEL0521I S � IEL0528I S

IEL0521I S WRONG NUMBER OF ARGUMENTS FOR
ENTRY.

WRONG NUMBER OF ARGUMENTS
SPECIFIED IN REFERENCE TO ENTRY
NAME. STATEMENT IGNORED.

Example:

P: PROC(X);

END;

CALL P(Y,Z);

IEL0522I S INVALID 'GOTO' IN ITERATIVE 'DO'
GROUP.

'GOTO' STATEMENT SPECIFIES
INVALID BRANCH INTO AN ITERATIVE
'DO' GROUP. STATEMENT IGNORED.

Example:

P: PROC;

DO I = 1 to 1ð;

L: A = A + 1;

 END;

 GOTO L;

END P;

IEL0523I S INVALID 'GOTO' TO 'FORMAT'
STATEMENT.

'GOTO' STATEMENT SPECIFIES
INVALID BRANCH TO A FORMAT
STATEMENT. STATEMENT IGNORED.

Example:

R: FORMAT (SKIP,COLUMN(2),A);

 GOTO R;

IEL0524I S AREA EXPRESSION SPECIFIED FOR
RETURNED OFFSET.

COMPILER RESTRICTION. AREA
SPECIFIED FOR OFFSET IN 'RETURNS'
SPECIFICATION IS NOT A SIMPLE AREA
NAME. AREA EXPRESSION IGNORED.

Example:

X: ENTRY RETURNS(OFFSET(P->A));

 CALL X;

Explanation: An area expression in a RETURNS
option must be a single identifier that is an area name.

IEL0525I S INVALID 'INITIAL' ATTRIBUTE
IGNORED.

INVALID INITIAL SPECIFICATION FOR
SCALAR. 'INITIAL' ATTRIBUTE
IGNORED.

Example:

DCL A INIT((1ð)ð);

IEL0526I S PSEUDO-VARIABLE INVALID AS
CONTROL VARIABLE.

SPECIFIC PSEUDO-VARIABLE NOT
ALLOWED AS CONTROL VARIABLE IN
ITERATIVE SPECIFICATION.
NONITERATIVE 'DO' ASSUMED.

Example:

DO COMPLEX(A,B) = M TO N;

IEL0527I U STATEMENT TOO LARGE.
COMPILATION TERMINATED IN PHASE
P.

COMPILER RESTRICTION. STATEMENT
TOO LARGE. COMPILATION
TERMINATED IN PHASE P.

Explanation: The amount of main storage available
for the compiler determines the maximum length of a
source statement. If the storage exceeds the maximum
available, the maximum possible statement length can
be used. This message can be produced also by a
statement containing many nonstatic arrays with the
INITIAL attribute, particularly if these arrays are
controlled or are arrays of structures.

Programmer Response: Either increase the amount
of main storage for the compiler by using the SIZE
compile-time option, or divide the statement into smaller
statements. If neither of the above apply, check that
the statement does not contain an unmatched quote
character or comment delimiter. If due to array
initialization, attempt to separate some of the
initialization code by means of dummy begin-blocks or
by using separate ALLOCATE statements. If this fails,
initialize the arrays by assignment. If the TOTAL option
is in use and the program contains many record I/O
statements close together, break up the sequence of
these statements by inserting BEGIN...END around half
of them.

IEL0528I S D INVALID AS REMOTE FORMAT ITEM.

D NOT VALID AS REMOTE FORMAT
ITEM. STATEMENT IGNORED.

Example:

DCL L(1ð) LABEL, X;

PUT FILE(F) EDIT(X) (R(L(1))); (valid)

PUT FILE(F) EDIT(X) (R(L1)); (valid)

PUT FILE(F) EDIT(X) (R(X)); (invalid)

L1: FORMAT (F(5,2));

Explanation: This message is produced if the remote
format item is neither a label on a FORMAT statement,
nor a label variable, nor a function reference that
returns a label.

56 PL/I for MVS & VM Messages and Codes

 IEL0529I S � IEL0541I I

IEL0529I S D IS NOT 'BASED' OR 'CONTROLLED'.

D IN 'FREE' STATEMENT NOT 'BASED'
OR 'CONTROLLED'. STATEMENT
IGNORED.

Example:

DCL A;

FREE A;

IEL0530I S INVALID USE OF 'STRING'
PSEUDO-VARIABLE.

COMPILER RESTRICTION. INVALID USE
OF 'STRING' PSEUDO-VARIABLE.
STATEMENT IGNORED.

Example:

GET STRING(STRING(A)); (invalid)

PUT STRING(STRING(A)); (invalid)

DISPLAY (B) REPLY(STRING(A)); (invalid)

READ FILE(F) INTO(X) KEYTO(STRING(A)); (invalid)

STRING(A) = C; (valid)

Explanation: The STRING pseudovariable can only
be used in an assignment statement.

IEL0531I S STRING LENGTH EXCEEDS N.

COMPILER RESTRICTION. STRING
LENGTH EXCEEDS N. REPETITION
FACTOR OF ONE ASSUMED.

Example:

A = (32768)'A'; /\ BECOMES 'A' \/

A = (16384)'AA'; /\ BECOMES 'AA' \/

Explanation: An attempt has been made to produce a
character or bit string with a length exceeding 32767 or
a graphic string with a length exceeding 16383, using a
repetition factor. A repetition factor of one is assumed.

IEL0532I S D NOT LABEL CONSTANT KNOWN IN
CURRENT BLOCK.

IDENTIFIER D AFTER 'LEAVE' IS NOT A
LABEL CONSTANT KNOWN IN THE
CURRENT BLOCK. LABEL IGNORED.

IEL0533I I NO 'DECLARE' STATEMENT(S) FOR
D,D,D...

Explanation: Identifiers in the list D,D,D...have not
been explicitly declared.

IEL0534I I NO 'DECLARE' STATEMENT(S) FOR
PARAMETER(S) D.

IEL0537I S EXTERNAL ENVIRONMENT NAME T IS
ONLY SUPPORTED FOR
OPTIONS(ASSEMBLER) ENTRY
CONSTANTS.

EXTERNAL ENVIRONMENT NAME T IS

ONLY SUPPORTED FOR
OPTIONS(ASSEMBLER) ENTRY
CONSTANTS. ENVIRONMENT NAME
IGNORED.

Example:
DCL SUM_IT ENTRY EXT('W23A44'); /\ invalid \/

DCL STRTBL CHAR EXT('S22Z53'); /\ invalid \/

DCL ASM ENTRY EXT('AXEZ11') OPTIONS(ASM); /\ valid \/

Explanation: The external environment name can only
be specified for an entry constant. The entry constant
must have the OPTIONS ASSEMBLER attribute. The
external environment name cannot be specified for an
entry variable.

IEL0538I S CHAR OR BIT OR GRAPHIC OR AREA
SIZE INVALID.

CHAR OR BIT OR GRAPHIC OR AREA
SIZE SPECIFIED AS NEGATIVE. ZERO
IS ASSUMED.

Example:

DCL A CHAR(-4);

Explanation: A character, bit, or graphic string has a
negative length specified. Zero is assumed.

IEL0539I E T IS NOT A BUILTIN FUNCTION NAME.

T EXPLICITLY DECLARED BUILTIN, BUT
IS NOT A BUILTIN FUNCTION NAME.
DECLARATION DELETED.

IEL0540I W EXTENDED FLOAT ARITHMETIC WILL
BE USED.

EXTENDED FLOAT ARITHMETIC WILL
BE USED IN THIS PROGRAM BECAUSE
IT CONTAINS ITEMS WITH EXTENDED
PRECISION.

Explanation: The message is given as a warning that
expressions can be evaluated using extended precision
even though they do not contain variables declared with
extended precision. The same expressions would be
evaluated using long float precision if no variables in the
source program were declared using extended
precision. Although the use of long float can mean loss
of precision, it avoids the performance degradation of
using extended float.

IEL0541I I 'ORDER' MAY INHIBIT OPTIMIZATION.

'ORDER' OPTION APPLIES TO THIS
BLOCK. OPTIMIZATION MAY BE
INHIBITED.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 57

 IEL0542I S � IEL0549I E

P: PROC;

A: PROC REORDER;

 B: PROC;

 END;

 END;

 C: PROC;

D: PROC ORDER;

 E: PROC;

 END;

 END;

 END;

END;

Explanation: The message is produced for
procedures P, C, D, and E. Procedure P has the
ORDER option by default; procedure C inherits the
ORDER option from procedure P; procedure D has the
ORDER option declared explicitly; and procedure E
inherits the ORDER option from procedure D.
Procedure A has the REORDER option declared
explicitly, and procedure B inherits the REORDER
option from procedure A. This message is produced
only when the OPT(TIME) option is specified for the
compilation of blocks to which the ORDER option
applies.

IEL0542I S AREA SPECIFIED FOR OFFSET IN
ENTRY DECLARATION.

COMPILER RESTRICTION. AREA
SPECIFIED FOR OFFSET IN 'ENTRY'
DECLARATION IS IGNORED.

Example:

DCL E ENTRY (OFFSET(A));

is assumed to be:

DCL E ENTRY (OFFSET);

IEL0543I S STRUCTURE TERMINATED AFTER N
MEMBERS.

COMPILER RESTRICTION. STRUCTURE
TERMINATED AFTER N ITEMS.

Explanation: The structure has too many separately
identifiable items. (Items include all minor structures
and elements.)

IEL0544I W 'BUILTIN' SUBROUTINE WILL NOT BE
USED FOR D.

D DECLARED AS EXTERNAL ENTRY
REQUIRES PROVISION OF
SUBROUTINE BY USER PROGRAM.
'BUILTIN' SUBROUTINE WILL NOT BE
USED.

Example:

DCL PLIDUMP ENTRY;

CALL PLIDUMP ('HB','P');

Explanation: Built-in subroutines such as PLIDUMP
are contextually declared to be built-in by their
appearance in a CALL statement.

IEL0545I W 'ASSEMBLER ' OPTION INVALID.

USE OF 'ASSEMBLER ' OPTION
INVALID ON 'PROCEDURE' OR
'ENTRY' STATEMENT. OPTION
IGNORED.

Example:

P: PROC OPTIONS(ASSEMBLER);

Explanation: The ASSEMBLER option is valid only in
an ENTRY declaration.

IEL0547I W 'INTER' OPTION ASSUMED.

'ASSEMBLER ' OPTION SPECIFIED
WITHOUT 'INTER' OPTION. 'INTER'
OPTION ASSUMED.

Example:

DCL E ENTRY OPTIONS(ASSEMBLER);

Explanation: The compiler does not disable PL/I
interrupt handling when processing and ENTRY
statement declared with the ASSEMBLER option.

IEL0548I W PARAMETER TO MAIN PROCEDURE
NOT VARYING CHARACTER STRING.
'NOEXECOPS' HAS BEEN ASSUMED.

PARAMETER TO PRIMARY ENTRY
POINT OF MAIN PROCEDURE IS NOT
VARYING CHARACTER STRING.
'NOEXECOPS' HAS BEEN ASSUMED.

Example:

P: PROC(X) OPTIONS(MAIN);

DCL X FLOAT;

Explanation: OS passes arguments in the form of PL/I
varying character strings, which comprise a 2-byte
length field followed by the string data. If the parameter
to the main procedure does not have the attributes
'VARYING CHARACTER', at execution, NOEXECOPS
is defaulted, the argument is passed as is, and run-time
options, if passed, are ignored. One result of this is
that PLITEST cannot be invoked by passing a run-time
option and therefore may not get control.

IEL0549I E CONFLICT IN USE OF D AS T.

CONFLICT BETWEEN USE OF D AS T
AND ITS DECLARED ATTRIBUTES. BIT
VALUE ONE ASSUMED IN WHEN
CLAUSE.

Example:

58 PL/I for MVS & VM Messages and Codes

 IEL0550I E � IEL0558I E

DCL E EVENT;

SELECT (CODE);

WHEN (E->B);

OTHERWISE;

END;

Explanation: In example identifier E is explicitly
declared with the attribute EVENT. Its contextual use
as a pointer (E->B) conflicts with the explicitly declared
attribute EVENT.

IEL0550I E INVALID PREFIX(ES) SPECIFIED ON
'WHEN' OR 'OTHERWISE' CLAUSE.

INVALID PREFIX(ES) SPECIFIED ON
'WHEN' OR 'OTHERWISE' CLAUSE.
PREFIX(ES) IGNORED.

Example:

SELECT(I);

LAB1: WHEN(A);

END;

or

Example:

SELECT(I);

WHEN(A);

(ZERODIVIDE): OTHERWISE;

END;

IEL0551I S NULL OR INVALID 'SELECT'
EXPRESSION.

NULL OR INVALID 'SELECT'
EXPRESSION. EXPRESSION IGNORED.

IEL0552I S DUPLICATE INITIALIZATION OF
ELEMENT OF LABEL ARRAY D.

SUBSCRIPTED STATEMENT PREFIX
SPECIFIES A DUPLICATE
INITIALIZATION OF AN ELEMENT OF
LABEL ARRAY T. PREFIX IGNORED.

Example:

DCL L(1ð) LABEL;
...

L(1): X = Y;
...

L(1): A = B;

Explanation: The second appearance of L(1) is in
error.

IEL0553I U END OF SOURCE TEXT IN
DOUBLE-BYTE CHARACTER STRING
OR STATEMENT TOO LONG AND
CONTAINS UNMATCHED QUOTE.

END OF SOURCE TEXT FOUND IN
DOUBLE-BYTE CHARACTER STRING
OR STATEMENT LENGTH TOO LONG
AND STATEMENT CONTAINS

UNMATCHED GRAPHIC QUOTE.
COMPILATION TERMINATED.

Explanation: The compiler has reached the end of the
source program or the maximum statement length and
has not found an ending quotation mark. The compiler
will terminate.

Programmer Response: Check whether there is a
quotation mark missing or the source program is
incomplete.

IEL0554I S CONVERSION OF GRAPHIC
EXPRESSION INVALID.

CONVERSION OF GRAPHIC
EXPRESSION INVALID. STATEMENT
IGNORED.

Explanation: No conversions are made by the
compiler for graphic data.

| IEL0556I S DBCS STRING CONSTANT HAS AN
| INVALID DBCS QUOTE.

| Explanation: The compiler encountered an invalid
| DBCS quote whle scanning a DBCS string constant.
| The DBCS quote is invalid because it is not doubled,
| nor does it denote the end of the string constant.

| Programmer Response: If the invalid DBCS quote is
| not needed, remove it. If the DBCS quote was intended
| to be a quote imbedded within the string constant,
| double the DBCS quote. If the DBCS quote was
| intended as an ending delimiter, correctly denote the
| end of the DBCS string.

IEL0557I S DBCS IDENTIFIER ' <kkkk >' CANNOT BE
EXTERNAL

Example:

DCL <kkkk> CHAR(5) EXT;

Explanation: DBCS names (non-EBCDIC) can be
used as internal names but not as external names.

IEL0558I E OPTIONS(BYVALUE) ASSUMED FOR
SYSTEM(CICS) OR SYSTEM(IMS).

OPTIONS(BYADDR) IS INVALID WITH
SYSTEM(CICS) OR SYSTEM(IMS)
COMPILER OPTION.
OPTIONS(BYVALUE) ASSUMED.

Example:
\PROCESS SYSTEM(IMS);

 T1: PROC(P) OPTIONS(BYADDR MAIN); /\ MSG IELð558 \/

DCL P POINTER;

\PROCESS SYSTEM(CICS);

 T2: PROC(E,C) OPTIONS(BYADDR MAIN); /\ MSG IELð558 \/

DCL (E,C) POINTER;

Explanation: A MAIN procedure newly compiled with
PL/I for MVS & VM can only receive parameters

 Chapter 1. Compile-Time and Macro Preprocessor Messages 59

 IEL0560I W � IEL0566I S

BYVALUE, if the SYSTEM(IMS) or SYSTEM(CICS)
compiler option is in effect. Receiving parameters
BYADDR is not allowed for programs newly compiled
(or recompiled) with PL/I for MVS & VM.

Programmer Response: Remove the
OPTIONS(BYADDR) specification. Alternatively,
change the SYSTEM compiler option to MVS.

IEL0560I W EXTERNAL ENTRY NAME BEGINS
'IHE'.

EXTERNAL ENTRY NAME BEGINS
'IHE'. POSSIBLE PL/I F COMPILER
BUILTIN SUBROUTINE.

Example:

CALL IHESRTA(A,B,C,D,E); /\SORT ROUTINE\/

Explanation: F compiler subroutines commence with
the characters “IHE,” and therefore it is likely that the
program has not been correctly converted for use with
the compiler.

IEL0561I I DUPLICATE D IN PARAMETER LIST.

D APPEARS MORE THAN ONCE IN THE
PARAMETER LIST. ONLY THE FIRST
OCCURRENCE IS USED.

Explanation: A parameter should not be specified
more than once in a parameter list. The compiler
ignores subsequent occurrences.

IEL0562I S MORE THAN N PARAMETERS
SPECIFIED.

MORE THAN N PARAMETERS
SPECIFIED FOR THE CURRENT BLOCK.

Explanation: The combined number of unique
parameters specified in the procedure statement and all
its entry statements cannot exceed 255.

Programmer Response: Either reduce the number of
unique parameters or restructure the program by
dividing the procedure into smaller ones with fewer
parameters.

IEL0563I W STATEMENT NUMBER/LEVEL/NEST
LISTING DETAILS MAY BE
INCOMPLETE.

STATEMENT NUMBER/LEVEL/NEST
DETAILS MAY BE INCOMPLETE IN
SOURCE LISTING DUE TO PREVIOUSLY
DETECTED INVALID SYNTAX.

Explanation: The compiler has noted an invalid syntax
condition (message IEL0327I). During subsequent

source analysis, several lines might be printed without
statement number, level, or nest details. (Incomplete
details might continue until the compiler encounters the
next line containing a quotation mark.)

Programmer Response: Correct the syntax error
noted by message IEL0327I.

IEL0564I E T CONFLICTS WITH T.

T OPTION CONFLICTS WITH THE T
OPTION AND IS IGNORED.

Example:

GET STRING(S1) EDIT(S2) (A(1ð)) COPY;

Explanation: The COPY option can appear only in a
GET FILE statement.

IEL0565I U TOO MANY 'DEFAULT'
SPECIFICATIONS.

COMPILER RESTRICTION. TOO MANY
'DEFAULT' SPECIFICATIONS.
PROCESSING TERMINATED.

Explanation: The maximum number of default
specifications allowed in a PL/I program depends on the
length of the sequence of letters specified in the
(default) range and can vary from 12 to 112. This
message is issued when this maximum number is
exceeded.

Programmer Response: Reduce the number of
default specifications or merge them together.

IEL0566I S '*' USED AS ARGUMENT TO D
WITHOUT 'OPTIONAL' PARAMETER
DESCRIPTOR ATTRIBUTE.

'*' USED AS ARGUMENT TO ENTRY D
BUT 'OPTIONAL' PARAMETER
DESCRIPTOR ATTRIBUTE IS MISSING.
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL X ENTRY OPTIONS(ASSEMBLER);

CALL X(\); /\ invalid \/

DCL Y ENTRY(OPTIONAL) OPTIONS(ASSEMBLER);

CALL Y(\); /\ valid \/

Explanation: The use of asterisk, '*', to specify an
omitted argument is only permitted in a CALL statement
if the OPTIONAL attribute has been specified in the
associated parameter descriptor list of the
OPTIONS(ASSEMBLER) ENTRY declaration.

Programmer Response: Add the missing OPTIONAL
attribute or remove the use of asterisk from the CALL
statement.

60 PL/I for MVS & VM Messages and Codes

 IEL0567I S � IEL0573I S

IEL0567I S 'OPTIONAL' IS ONLY SUPPORTED FOR
OPTIONS(ASSEMBLER) ENTRIES.

'OPTIONAL' ATTRIBUTE IS ONLY
SUPPORTED FOR
OPTIONS(ASSEMBLER) ENTRIES.
'OPTIONAL' ATTRIBUTE IGNORED FOR
ENTRY D.

Example:
DCL X ENTRY(OPTIONAL); /\ invalid \/

DCL Y ENTRY(POINTER OPTIONAL) OPTIONS(ASM); /\ valid \/

DCL Z ENTRY(\ OPTIONAL) OPTIONS(ASM); /\ valid \/

Explanation: The use of the OPTIONAL attribute
requires that OPTIONS ASSEMBLER be specified.

The OPTIONAL attribute is only supported within the
parameter descriptor list of OPTIONS ASSEMBLER
entries declared using the ENTRY attribute. OPTIONAL
is not allowed in the DEFAULT statement or as a
generic-descriptor attribute.

IEL0569I W PARAMETER TO MAIN PROCEDURE
CONFLICTS WITH THE SYSTEM
COMPILER OPTION SPECIFICATION

Explanation: The format of the run-time parameters
passed to the program do not match the format that
was expected. The SYSTEM(...) compile option is most
likely incompatible with the run-time system.

Note that MAIN procedures newly compiled by PL/I for
MVS & VM now default/require OPTIONS(BYVALUE) if
the SYSTEM(CICS) or SYSTEM(IMS) compiler option is
in effect. Receiving parameters BYADDR is not allowed
for programs newly compiled (or recompiled) with PL/I
for MVS & VM.

Compiler implementation note: this message is issued
even if the parameter is contextually declared with the
correct data attributes.

IEL0570I S 'BYVALUE ' PARAMETER D MUST BE
POINTER OR REAL FIXED BINARY(31,0).

'BYVALUE ' PARAMETER D MUST BE
EITHER SCALAR POINTER OR SCALAR
REAL FIXED BINARY(31,0).

Example:

P: PROC(A,B,C,D) OPTIONS(BYVALUE);

DCL A FIXED BIN(31) COMPLEX; /\ invalid \/

DCL B(4) FIXED BIN(31); /\ invalid \/

DCL C CHAR(4); /\ invalid \/

DCL D FLOAT; /\ invalid \/

Explanation:

Procedures specifying OPTIONS(BYVALUE) are only
allowed to have parameters with either the POINTER or
REAL FIXED BINARY(31,0) data types. Arrays and
structures are not allowed.

Note that MAIN procedures newly compiled by PL/I for
MVS & VM now default/require OPTIONS(BYVALUE), if
the SYSTEM(CICS) or SYSTEM(IMS) compiler option is
in effect. Receiving parameters BYADDR is not allowed
for programs newly compiled (or recompiled) with PL/I
for MVS & VM.

Compiler implementation note: this message is issued
even if the parameter is contextually declared with the
correct data attributes.

Programmer Response: Correct the data type
attributes.

IEL0571I S 'BYVALUE ' PARAMETER D MUST NOT
BE CONTROLLED.

'BYVALUE ' PARAMETER D MUST NOT
HAVE CONTROLLED ATTRIBUTE.

Example:

P: PROC(K) OPTIONS(BYVALUE);

DCL K FIXED BIN(31) CONTROLLED; /\ invalid \/

Explanation:

Procedures specifying OPTIONS(BYVALUE) may not
have parameters with the CONTROLLED attribute.

Programmer Response: Remove the CONTROLLED
attribute.

IEL0572I S ARGUMENT(S) FOR 'BYVALUE ' ENTRY
D MUST BE POINTER OR REAL FIXED
BINARY(31,0).

ARGUMENT(S) FOR
OPTIONS(BYVALUE) ENTRY D MUST BE
EITHER SCALAR POINTER OR SCALAR
REAL FIXED BINARY(31,0).

Example:

DCL X ENTRY OPTIONS(BYVALUE);

DCL A FIXED BIN(31) COMPLEX;

DCL B(4) FIXED BIN(31);

DCL C CHAR(4);

DCL D FLOAT;

CALL X(A,B,C,D); /\ all arguments are invalid \/

Explanation: Calls to entries declared with
OPTIONS(BYVALUE) must pass arguments that have
the attributes of either POINTER or REAL FIXED
BINARY(31,0). Arrays and structures are not allowed.

Programmer Response: Change the arguments so
that they have allowable attributes.

IEL0573I S 'CONTROLLED' PARAMETER IS
INVALID FOR 'BYVALUE ' ENTRY D.

'CONTROLLED' PARAMETER
DESCRIPTOR IS INVALID FOR
OPTIONS(BYVALUE) ENTRY D.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 61

 IEL0574I S � IEL0580I E

DCL Y ENTRY(POINTER CONTROLLED) OPTIONS(BYVALUE); /\ invalid \/

Explanation: OPTIONS(BYVALUE) ENTRY
declarations must not have parameter descriptors that
specify or default the CONTROLLED attribute.

Programmer Response: Remove the CONTROLLED
attribute.

IEL0574I S 'OPTIONAL' AND 'BYVALUE '
CONFLICT FOR ENTRY D.

'OPTIONAL' ATTRIBUTE AND
'BYVALUE ' OPTION CONFLICT.
'OPTIONAL' ATTRIBUTE IS IGNORED
FOR ENTRY D.

Example:
DCL X ENTRY(\ OPTIONAL) OPTIONS(BYVALUE ASM); /\ invalid \/

Explanation: A declared entry may not specify both
OPTIONS(BYVALUE) and the OPTIONAL parameter
descriptor.

Programmer Response: Remove one of the
conflicting options.

IEL0575I S RETURNED VALUE FOR 'BYVALUE '
PROCEDURE MUST BE POINTER OR
REAL FIXED BINARY(31,0).

DATA TYPE OF RETURNED VALUE FOR
OPTIONS(BYVALUE) PROCEDURE
MUST BE EITHER POINTER OR REAL
FIXED BINARY(31,0).

Example:
P: PROC OPTIONS(BYVALUE) RETURNS(FLOAT); /\ invalid \/

DCL F FLOAT;

 RETURN(F);

Explanation: Procedures specifying
OPTIONS(BYVALUE) are only allowed to return either
the POINTER or the REAL FIXED BINARY(31,0) data
type.

Programmer Response: Change the RETURNS data
type to an allowable type. Alternatively, omit the
RETURN statement that returns a value and invoke the
procedure not as a function reference but with a CALL
statement.

IEL0576I S PARAMETER(S) FOR 'BYVALUE '
ENTRY D MUST BE POINTER OR REAL
FIXED BINARY(31,0).

PARAMETER DESCRIPTOR(S) FOR
OPTIONS(BYVALUE) ENTRY D MUST BE
EITHER SCALAR POINTER OR SCALAR
REAL FIXED BINARY(31,0).

Example:

DCL X ENTRY(FLOAT) OPTIONS(BYVALUE); /\ invalid \/

DCL Y ENTRY(CHAR) OPTIONS(BYVALUE); /\ invalid \/

Explanation: OPTIONS(BYVALUE) ENTRY
declarations must have parameter descriptors that
specify or default to either POINTER or REAL FIXED
BINARY(31,0). Arrays and structures are not allowed.

Programmer Response: Correct the data type
attributes.

IEL0577I S RETURNED VALUE FOR 'BYVALUE '
ENTRY D MUST BE POINTER OR REAL
FIXED BINARY(31,0).

DATA TYPE OF RETURNED VALUE FOR
OPTIONS(BYVALUE) ENTRY D MUST BE
EITHER POINTER OR REAL FIXED
BINARY(31,0).

Example:
DCL X ENTRY OPTIONS(BYVALUE) RETURNS(BIT(32)); /\ invalid \/

DCL B BIT(32);

B = X();

Explanation: Entries declared with
OPTIONS(BYVALUE) are only allowed to return either
the POINTER or the REAL FIXED BINARY(31,0) data
type.

Programmer Response: Change the RETURNS data
type to an allowable type.

IEL0578I S D HAS BOUND GREATER THAN
2147483647

COMPILER RESTRICTION. D DECLARED
WITH ARRAY BOUND GREATER THAN
2147483647. 2147483647 ASSUMED
FOR BOUND.

Explanation: When CMPAT(V2) is used, larger arrays
are allowed. The upper bound cannot be larger than
2**31 - 1.

 IEL0579I S D HAS BOUND LESS THAN
-2147483648.

COMPILER RESTRICTION. D DECLARED
WITH ARRAY BOUND LESS THAN
-2147483648. -2147483648 ASSUMED
FOR BOUND.

Explanation: When CMPAT(V2) is used, larger
arrays are allowed. The lower bound cannot be less
than -2**31.

IEL0580I E INVALID INITIALIZATION FOR 'STATIC'
LABEL D.

INITIALIZATION INVALID FOR 'STATIC'
LABEL VARIABLE D. INITIALIZATION
ACCEPTED.

Example:

62 PL/I for MVS & VM Messages and Codes

 IEL0581I S � IEL0589I S

1. DCL LV LABEL STATIC INIT(LAB);

 LAB: ;

2. DCL L(1ð) LABEL STATIC;

 L(1): ;

Explanation: The compiler allows the illegal language
shown above, but for the program to run successfully,
the OPT(TIME) compiler option must be specified, and
the number of elements in the array must not exceed
511.

IEL0581I S INVALID BIT AGGREGATE DEFINING
IGNORED.

COMPILER RESTRICTION. INVALID USE
OF 'DEFINED' FOR BIT AGGREGATE D.
'DEFINED' ATTRIBUTE IGNORED.

Example:

DCL 1 B1(1ð),

2 B2 BIT(1),

2 B3 BIT(1),

2 B4 BIT(2);

1. DCL 1 D11(1ð) DEF B1,

2 D2 BIT(2),

2 D3 BIT(3);

(this declaration is valid)

2. DCL 1 D12 DEF B1(2),

2 D2 BIT(2),

2 D3 BIT(3);

(this declaration is invalid)

3. DCL 1 D13 (1ð) DEF B1 POS(X),

2 D2 BIT(1),

2 D3 BIT(1);

(this declaration is also invalid)

Explanation: Defining on a bit aggregate is not
allowed by this compiler when either the defined item is
subscripted or the expression in the POSITION attribute
is not an integer constant.

IEL0582I E MORE THAN 64 PARAMETERS.

MORE THAN 64 PARAMETERS IN CALL
OR FUNCTION STATEMENT.

Explanation: The compiler limits the number of
parameters on a CALL or function reference to 64.

Programmer Response: If some (or all) of the
parameters can be collected into a structure then the
structure can be passed as a single parameter.

IEL0583I E THE NUMBER OF DIGITS IN THE 'X' OR
'GX' CONSTANT T IS INVALID. THE
CONSTANT WILL BE PADDED WITH
HEXADECIMAL ZEROES.

Example:

C = '123'X;

G = '438743'GX;

Explanation: The hexadecimal characters in the
constant string was not a multiple of 2('X') or a multiple
of 4('GX'). An X constant represents bytes of storage
and, therefore, must contain two hex digits for each
byte. Similarly, a GX constant represents pairs of bytes
of storage.

IEL0584I S A CHARACTER IN THE 'X' OR 'GX' OR
'BX' CONSTANT T IS INVALID. THE
CONSTANT IS IGNORED.

Example:

C = '6FG3'X;

Explanation: Characters within X, GX or BX constants
must be digits (0-9) or hex characters (A-F).

IEL0585I S THE 'BX' CONSTANT T IS TOO LONG. IT
IS IGNORED.

Explanation: The BX bit string constant is too long.
Each hexadecimal digit will be converted to four (4) bits,
so a BX constant of length 1024 is equivalent to a bit
constant of length 4096.

Programmer Response: Use concatenation or
replication to build the long string from several shorter
ones.

IEL0586I S THE SOURCE RECORD CONTAINS AN
INVALID USE OF A SHIFT-IN OR
SHIFT-OUT. T IS IGNORED.

Example:

GG = <kk<kk>>;

Explanation: An input data record was received that
did not use shift codes properly. The example shows
“nested” DBCS characters which is not allowed. This
message is also produced if a shift-in was encountered
following an SBCS character.

IEL0589I S A CHARACTER IN THE CHARACTER
CONSTANT T IS INVALID. THE
CONSTANT IS IGNORED.

Example:

C = 'A<kk>';

Explanation: The character string constant contains a
DBCS data item having no SBCS equivalent. If
non-EBCDIC DBCS characters are to be included in a
string constant, the mixed string constant must be used.

Programmer Response: The example above can be
corrected by writing C = 'A<kk>'M;.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 63

 IEL0590I S � IEL0601I S

IEL0590I S A BLANK REPLACED AN INVALID
CHARACTER IN AN IDENTIFIER. T IS
NOW T.

Explanation: The identifier contains an invalid DBCS
character. The invalid character is replaced by a blank.

IEL0591I I THE 'NOEXECOPS' OPTION IS ONLY
VALID FOR THE MAIN PROCEDURE.
'NO EXECOPS' IS IGNORED.

Explanation: NOEXECOPS cannot appear with a
PROCEDURE statement that is internal to the program.
It can appear only with the first PROCEDURE
statement; the one that contains the MAIN suboption.

IEL0592I S THE SOURCE RECORD VIOLATES
DOUBLE-BYTE CHARACTER
CONTINUATION RULES. THE RECORD
IS IGNORED.

Explanation: A shift-out was detected in the right-most
statement position. DBCS continuation is not defined
for this situation.

Programmer Response: Move the statement left or
right if possible. If a constant is involved you might be
able to break it into several parts and concatenate the
parts.

IEL0593I S THE SOURCE RECORD ENDS IN
DOUBLE-BYTE MODE. THE RECORD IS
IGNORED.

Explanation: All PL/I source program records must
end with either an SBCS character or a shift-in code.

IEL0594I S THE SHIFT CODES ARE MISSING IN THE
GRAPHIC CONSTANT T. THE
CONSTANT IS IGNORED.

Example:

G = 'kk'G;

Explanation: The shift codes were omitted from the
graphic string constant.

Programmer Response: The example above can be
corrected by writing G = '<kk>'G;

IEL0595I S THE NUMBER OF DIGITS IN THE
GRAPHIC CONSTANT T IS INVALID.
THE CONSTANT IS IGNORED.

Explanation: Graphic constants must contain pairs of
bytes.

IEL0596I S A DOUBLE-BYTE ITEM OVERLAPS THE
MARGINS. THE RECORD IS IGNORED.

Example:

DCL GG GRAPHIC(4ð) INIT('<jj...m m>'G);

 |

 margin

Explanation: The right margin terminates a statement
between the two bytes of a double-byte character. The
same thing can happen when the left margin splits a
double-byte character.

IEL0599I W D IS NOT THE SAME AS THAT
SPECIFIED OR IMPLIED BY THE
OFFSET ATTRIBUTE.

D IS NOT THE SAME AS THAT
SPECIFIED OR IMPLIED BY THE
OFFSET ATTRIBUTE. THE RESULTS OF
EXECUTION ARE UNDEFINED UNLESS
THE FORMER IS CONTAINED IN OR
CONTAINS THE LATTER.

Example:

DCL A AREA(3ð);

DCL D FIXED BINARY(31) BASED;

DCL 1 B BASED(P),

2 OFF OFFSET(A),

2 C AREA(1ð);

ALLOCATE B IN(A) SET(P);

ALLOCATE D IN(C) SET(OFF);

Explanation: A run error can occur if the OFFSET
variable is not contained in an area as specified in the
IN/SET option of the ALLOCATE statement. (See the
rules for the ALLOCATE statement in the PL/I for MVS
& VM Language Reference.)

IEL0600I S [PROLOGUE CODE.] LOCATOR
QUALIFICATION OF BUILTIN FUNCTION
T.

[PROLOGUE CODE.] LOCATOR
QUALIFICATION OF BUILTIN FUNCTION
T. STATEMENT IGNORED. [RESULTS
OF PROLOGUE UNDEFINED.]

Example:

DCL TIME BUILTIN;

 T = P->TIME;

Explanation: Locators can only qualify based
variables. Built-in functions cannot be based.

IEL0601I S INVALIDLY DECLARED VARIABLE.
STATEMENT IGNORED.

INVALID DECLARATION OF A
VARIABLE USED IN THIS STATEMENT.
STATEMENT IGNORED.

Example:

DCL X BASED (A.B);
...

X = 1;

64 PL/I for MVS & VM Messages and Codes

 IEL0602I S � IEL0609I W

Explanation: A variable which has been incorrectly
declared and for which a message will have been
issued has been used elsewhere. The message is
issued because the compiler was unable to complete
the declaration of the variable.

IEL0602I S [PROLOGUE CODE.] LOCATOR
QUALIFICATION OF NON-BASED D.

[PROLOGUE CODE.] LOCATOR
QUALIFICATION OF NON-BASED
VARIABLE D. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL P POINTER, B FIXED;

A = P -> B;

Explanation: Locators (pointers and offsets) can only
qualify based variables.

IEL0603I S STRUCTURE D DEPENDS ON A
VARIABLE WITHIN STRUCTURE.

MAJOR STRUCTURE D ALLOCATION
DEPENDS ON A VARIABLE DEFINED
WITHIN THE STRUCTURE. [RESULTS
OF EXECUTION UNDEFINED.]

IEL0604I S [PROLOGUE CODE.] AGGREGATE D
INVALID AS LOCATOR QUALIFIER.

[PROLOGUE CODE.] USE OF
AGGREGATE D FOR LOCATOR
QUALIFICATION IS INVALID.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL P(1ð) POINTER;

P -> X = Y;

Explanation: A locator qualifier must be an element
and cannot be an unsubscripted or unqualified
reference to an aggregate containing locators.

IEL0605I S [PROLOGUE CODE.] LEVEL OF
LOCATOR QUALIFICATION EXCEEDS N.

COMPILER RESTRICTION. [PROLOGUE
CODE.] LOCATOR QUALIFICATION IS
RECURSIVE OR NUMBER OF LEVELS
EXCEEDS N. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL Q OFFSET(P),

P AREA BASED (Q);

DCL X AREA;

Q->P = X;

IEL0606I S [PROLOGUE CODE.] NO LOCATOR
QUALIFICATION FOR BASED VARIABLE
D.

[PROLOGUE CODE.] BASED VARIABLE
D IS REFERENCED WITHOUT LOCATOR
QUALIFICATION. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL B BASED;

A = B;

Explanation: A based variable declared without an
implicit pointer qualifier must be referred to with an
explicit pointer qualifier.

IEL0607I W [PROLOGUE CODE.] T INVALID AS
LOCATOR QUALIFIER.

[PROLOGUE CODE.] INVALID USE OF
BUILTIN FUNCTION T AS LOCATOR
QUALIFIER. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Explanation: A built-in function cannot be used as a
locator qualifier.

IEL0608I S [PROLOGUE CODE.] ENTRY D INVALID
AS LOCATOR QUALIFIER.

[PROLOGUE CODE.] INVALID USE OF
ENTRY D AS A LOCATOR QUALIFIER.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Explanation: An entry name cannot be used as a
locator qualifier.

IEL0609I W [PROLOGUE CODE.] EXPRESSION
INVALID AS ARGUMENT TO 'STRING'.

[PROLOGUE CODE.] INVALID USED OF
EXPRESSION AS ARGUMENT TO
'STRING' BUILTIN FUNCTION.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

A = STRING(B + C);

Explanation: The argument to the STRING built-in
function must be an expression representing string data.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 65

 IEL0610I S � IEL0616I W

IEL0610I S [PROLOGUE CODE.] INVALID
ARGUMENT TO 'STRING'.

[PROLOGUE CODE.] ELEMENTS OF
ARGUMENT TO 'STRING' BUILTIN
FUNCTION MUST BE EITHER ALL
CHARACTERS OR ALL BIT. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL 1 S,

2 B BIT(1),

2 C CHAR(6);

A = STRING(S);

Explanation: The argument to the STRING built-in
function must consist of string data that is either all BIT
or all CHARACTER.

IEL0611I S [PROLOGUE CODE.] NO ARGUMENTS
PASSED TO T.

[PROLOGUE CODE.] NO ARGUMENTS
PASSED TO BUILTIN FUNCTION OR
PSEUDO-VARIABLE T. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

IEL0612I S INVALID ARGUMENT TO T.

EXPRESSION OR CONSTANT INVALID
AS ARGUMENT TO PSEUDO-VARIABLE
T. STATEMENT IGNORED.

Example:

SUBSTR (A + B,I,J) = C;

Explanation: The argument to the pseudovariable
must be an element variable.

IEL0613I S DATA TYPE OF ARGUMENT D INVALID
FOR T.

[PROLOGUE CODE.] DATA TYPE OF
ARGUMENT D INVALID FOR BUILTIN
FUNCTION T. STATEMENT IGNORED.
[RESULT OF PROLOGUE UNDEFINED.]

Example:

DCL E FIXED BINARY;

I = STATUS (E);

(E should be an event variable.)

IEL0614I S [PROLOGUE CODE.] INCORRECT
'AREA' SPECIFIED FOR OFFSET D.

[PROLOGUE CODE.] INCORRECT
'AREA' SPECIFIED OR DECLARED FOR
OFFSET D. STATEMENT IGNORED.
[RESULT OF PROLOGUE UNDEFINED.]

Example:

DCL (A,B) AREA,

 C FIXED,

 S BASED(P),

 O OFFSET(C);

ALLOCATE S IN(A) SET(O);

IEL0615I W RESULTS MAY BE UNDEFINED IN USE
OF 'REFER' VARIABLE D.

COMPILER RESTRICTION. RESULTS
MAY BE UNDEFINED IF LOCATOR
QUALIFIER FOR D OR 'REFER'
EXTENTS CHANGED IN LOOP.

Example:

DCL 1 N BASED, 2 NO, 2 NV(I REFER(NO)), 2 NP;

Q = P(1);

DO I = 1 BY 1 WHILE (Q -> NP<4);

Q = P(I + 1);

END;

Explanation: Mapping to refer variables appearing in
WHILE expressions is performed once only outside the
loop so that the expression is reevaluated without taking
account of any changes of generation or adjustability. If
the generation to the refer variable is changed in the
loop by an ALLOCATE or FREE statement, by an
assignment to a locator qualifying the refer variable, or
if the extents of the refer variable are changed in the
loop, unexpected results might occur.

IEL0616I W VARIABLE IN 'INITIAL' FOR D MAY BE
UNINITIALIZED.

INITIAL SPECIFICATION FOR VARIABLE
D MAY CONTAIN AN UNINITIALIZED
VARIABLE. RESULTS OF EXECUTION
UNDEFINED.

Example:

DCL M, N INIT(M);

Explanation: This is a possible error detected in
compiling the prologue routine to the program block
which contains the erroneous initial specification.
Consequently, the statement number given in this
message is that of the PROCEDURE or BEGIN
statement for the block.

Programmer Response: The program might contain a
preceding declaration which uses the INITIAL CALL
form of the INITIAL attribute to invoke a procedure that
assigns a value to the identifier used in the subsequent
INITIAL specification. If so, this message can be
ignored. Otherwise, the program should be modified to
ensure that the identifier will be initialized before it is
used in the INITIAL attribute.

66 PL/I for MVS & VM Messages and Codes

 IEL0617I S � IEL0623I S

IEL0617I S T NOT LEVEL ONE.

D IN 'FREE' STATEMENT NOT LEVEL
ONE. STATEMENT IGNORED.

Example:

DCL 1 A BASED,

2 B, 2 C;

...

FREE B;

Explanation: A free statement cannot be used to free
storage occupied by a part of a based or controlled
item.

IEL0618I S [PROLOGUE CODE.] 'DCL'OR 'DFT'
STATEMENT CONTAINS INVALID
EXPRESSION.

[PROLOGUE CODE] 'DECLARE' OR
'DEFAULT' STATEMENT CONTAINS AN
INVALID EXPRESSION. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

IEL0619I S [PROLOGUE CODE.] CONSTANT
ARGUMENT TO T.

[PROLOGUE CODE.] CONSTANT IS
INVALID ARGUMENT TO BUILTIN
FUNCTION T. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL P POINTER;

...

P = ADDR(27);

...

L: P = ADDR(L);

Explanation: A constant in PL/I is not considered to
be associated with a particular location in storage. It
cannot, therefore, have a storage address.

IEL0620I S [PROLOGUE CODE.] ARGUMENT N TO D
IS NOT AN ARRAY.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D IS NOT AN
ARRAY BUT THE CORRESPONDING
PARAMETER HAS A '*' BOUND.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL J;

 CALL E(J);

E: PROC(P);

DCL P(\);

Explanation: A parameter with an adjustable (*)
bound is assumed to be an array that obtains the value
for the bound from the associated argument.
Consequently, the argument must also be an array.

IEL0621I W [PROLOGUE CODE.] AGGREGATE
ARGUMENT D INVALID FOR ELEMENT
PARAMETER.

[PROLOGUE CODE.] PARAMETER
CORRESPONDING TO AGGREGATE
ARGUMENT D IS AN ELEMENT.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

1. DCL E ENTRY(FLOAT),

 ARR(8) FLOAT;

 CALL E(ARR);

2. DCL ARR(8) FLOAT;

 CALL E(ARR);

 E: PROC (PARAM);

DCL PARAM FLOAT;

Explanation: An aggregate argument cannot be
passed to a parameter that is not an aggregate.

IEL0622I W RECORD VARIABLE D NOT
'CONNECTED'.

RECORD VARIABLE D IS NOT
'CONNECTED'. STATEMENT IGNORED.

Example:

DCL 1 A (4),

2 B CHAR (3),

2 C CHAR (7);

READ FILE(F) INTO (B);

Explanation: The INTO or FROM option of a
record-oriented input/output statement must refer to an
identifier that represents a contiguous area of storage.

IEL0623I S [PROLOGUE CODE.] ARGUMENT N TO D
INVALID FOR 'CONTROLLED'
PARAMETER.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D INVALID FOR
'CONTROLLED' PARAMETER.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL X(1ð);

CALL E(X);

E: PROC(C);

DCL C(1ð) CTL;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 67

 IEL0624I S � IEL0629I S

Explanation: An argument corresponding to a
controlled parameter must be a level 1 unsubscripted
variable with the CONTROLLED attribute. Other
attributes must also match those of the parameter so
that the argument need not be converted and assigned
to a temporary argument.

IEL0624I S [PROLOGUE CODE.] ARGUMENT N TO D
HAS TOO MANY DIMENSIONS.

COMPILER RESTRICTION. [PROLOGUE
CODE.]RESULT OF EXPRESSION IN
ARGUMENT NUMBER N TO ENTRY D
HAS TOO MANY DIMENSIONS.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL 1 A,

 2 B,

2 C(2, 2, 2, 2, 2, 2, 2, 2, 2, 2);

CALL X(A + C);

Explanation: The expression (A+C) results in a
temporary argument that is an array of structures, the
first structure element having 10 dimensions, and the
second having 20 dimensions. The maximum number
of dimension allowed is 15. If an argument contains
both an array and a structure and there is no parameter
descriptor, the temporary argument is created in the
form of an array of structures.

IEL0625I S [PROLOGUE CODE.] '*' USED AS
ARGUMENT TO D.

[PROLOGUE CODE.] '*' USED AS
ARGUMENT TO D. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

1. CALL X(\);

X: PROC(N); ... END;

2. A = HBOUND (\,1);

Explanation: An asterisk, which can be used in a
subscript list to indicate a cross-section of an array, is
meaningless in an argument list. The error might have
occurred because an array declaration has been
omitted.

IEL0626I S [PROLOGUE CODE.] STRUCTURING OF
D DOES NOT MATCH PARAMETER.

[PROLOGUE CODE.] STRUCTURING OF
ARGUMENT D DOES NOT MATCH THAT
OF THE PARAMETER. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL 1 S, 2 S1, 2 S2;

CALL P(S);

P: PROC(F);

DCL 1 F, 2 F1, 2 F2, 3 F3;

END P;

Explanation: A structure passed as an argument
should match the corresponding parameter exactly.
(However, a parameter that is a structure can
correspond to an argument that is not a structure.)

IEL0627I S NUMBER OF DIMENSIONS IN
ARGUMENT 'H' DOES NOT MATCH
THAT OF PARAMETER.STATEMENT
IGNORED.

[PROLOGUE CODE.] NUMBER OF
DIMENSIONS IN ARGUMENT D DOES
NOT MATCH THAT OF THE
PARAMETER. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL H(1ð);

CALL Q(H);

Q:PROC(G);

DCL G(1ð,1ð);

Explanation: An array passed as an argument must
match the corresponding array parameter for
dimensions. (However, a parameter that is an array
can correspond to an argument that is not an array.)

IEL0628I S [PROLOGUE CODE] BOUNDS OF D DO
NOT MATCH PARAMETERS.

[PROLOGUE CODE] BOUNDS OF
ARGUMENT D DO NOT MATCH THOSE
OF PARAMETERS. STATEMENT
IGNORED.[RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL S(4,12);

CALL P(S);

P: PROC(F);

DCL F(4,1ð);

Explanation: An argument with fixed bounds must
match the corresponding parameter at all levels.

IEL0629I S [PROLOGUE CODE] USE OF
CROSS-SECTION OF STRUCTURE D IS
INVALID.

COMPILER RESTRICTION. [PROLOGUE
CODE] USE OF CROSS-SECTION OF
STRUCTURE D IS INVALID.
STATEMENT IGNORED.[RESULTS OF
PROLOGUE UNDEFINED.]

Example:

68 PL/I for MVS & VM Messages and Codes

 IEL0630I S � IEL0636I S

DCL 1 S(4,4), 2 S1, 2 S2;

CALL X(S(2,\));

Explanation: A cross-section of an array of structures
cannot be given as an argument. The reference must
be either fully subscripted with an asterisk for each
dimension or unsubscripted.

IEL0630I S [PROLOGUE CODE] SUBSCRIPT
CONTAINING D IS NOT AN ELEMENT.

SUBSCRIPT CONTAINING D IS NOT AN
ELEMENT EXPRESSION. STATEMENT
IGNORED.[RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL A(1ð,1ð);

A(2,A) = 1;

Explanation: An array subscript must be an
expression that represents the value of a single integer.

IEL0631I S [PROLOGUE CODE.] WRONG NUMBER
OF SUBSCRIPTS FOR D.

[PROLOGUE CODE.] WRONG NUMBER
OF SUBSCRIPTS FOR D. [RESULTS OF
PROLOGUE UNDEFINED.] [STATEMENT
IGNORED.]

Example:

1. DCL A(5,5);

X = A(2);

2. DCL A;

X = A(2);

Explanation: A reference to an array must contain the
same number of subscripts as given in its declaration.

IEL0632I S [PROLOGUE CODE.] STRUCTURE IS
INVALID ARGUMENT TO T.

COMPILER RESTRICTION. [PROLOGUE
CODE.] STRUCTURE IS INVALID
ARGUMENT TO BUILTIN FUNCTION T.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL 1 S,

2 S1 CHAR,

2 S2 CHAR(4);

S = SUBSTR(S,1,3);

Explanation: The only built-in functions that accept
structures as arguments are ALLOCATION, ADDR, and
STRING. All other operations on structures by built-in
functions must be specified individually for each
element.

IEL0633I S [PROLOGUE CODE.] EXPRESSION OR
'ISUB' ARRAY INVALID ARGUMENT TO
T.

[PROLOGUE CODE.] EXPRESSION OR
ISUB-DEFINED ARRAY IS INVALID
ARGUMENT TO BUILTIN FUNCTION T.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

I = ALLOCATION(A + B);

Explanation: Operational expressions are not allowed
as arguments to the built-in functions ALLOCATION,
ADDR, and STRING.

IEL0634I S [PROLOGUE CODE.] ELEMENT IS
INVALID ARGUMENT TO T.

[PROLOGUE CODE.] ELEMENT IS
INVALID ARGUMENT TO BUILTIN
FUNCTION T. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL X;

I = HBOUND(X,1);

Explanation: Array built-in functions cannot have
element arguments.

IEL0635I E [PROLOGUE CODE.] NONCONNECTED
ARGUMENT TO 'ADDR' INVALID.

[PROLOGUE CODE.] NONCONNECTED
ARGUMENT TO BUILTIN FUNCTION
'ADDR' INVALID. ARGUMENT
ACCEPTED.

Example:

DCL A(1ð,1ð), P POINTER;

P = ADDR(A(\,1));

Explanation: The argument to the built-in function
ADDR occupies nonconnected storage. The value
returned by the function is the address of the first byte
of the argument. Care must be exercised when using
this pointer to refer to a based variable, because it is
probable that the based variable will be mapped over
storage occupied not only by the argument, but by
some other variable as well.

IEL0636I S EXPRESSION OR 'ISUB' ARRAY IN
GET/PUT DATA.

EXPRESSION OR ISUB-DEFINED ARRAY
USED IN GET/PUT DATA. STATEMENT
IGNORED.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 69

 IEL0637I S � IEL0643I S

1. DCL A(1ð), B(5) DEF A(2\1SUB);

 GET DATA(B);

2. DCL C(6) CHAR(8);

 PUT DATA(SUBSTR(C,3));

Explanation: PL/I does not allow expressions in GET
DATA or PUT DATA statements, and the compiler does
not implement the transmission of ISUB defined arrays
by these statements.

IEL0637I S [PROLOGUE CODE.] SECOND
ARGUMENT TO T IS AGGREGATE.

[PROLOGUE CODE.] SECOND
ARGUMENT TO BUILTIN FUNCTION T IS
AN AGGREGATE. STATEMENT
IGNORED. [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL ARR(1ð), T;

T = HBOUND(ARR,ARR);

Explanation: With the exception of the POLY built-in
function, the array built-in functions that have two
arguments must have an element expression as the
second argument.

IEL0638I S [PROLOGUE CODE.] ARGUMENT N TO
'POLY' HAS MORE THAN ONE
DIMENSION.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO BUILTIN FUNCTION
'POLY' HAS MORE THAN ONE
DIMENSION. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL ARR(6,6);

X = POLY(ARR,X);

IEL0639I E [PROLOGUE CODE.] ARGUMENT TO
'ADDR' MAY HAVE WRONG
ALIGNMENT.

[PROLOGUE CODE.] ARGUMENT TO
BUILTIN FUNCTION 'ADDR' MAY HAVE
WRONG ALIGNMENT. ARGUMENT
ACCEPTED.

Example:

DCL 1 S UNALIGNED,

2 T BIT(3),

2 U BIT(8),

2 P PTR;

P = ADDR(U);

Explanation: This implementation uses byte
addresses for locator values and does not provide bit
addressing mechanisms for them. Consequently, if the

argument to the ADDR built-in function does not lie on a
byte boundary, the address returned will be that of the
containing byte.

IEL0640I W ARGUMENT N TO GENERIC ASSUMED
TO MATCH AGGREGATE PARAMETER.

ARGUMENT NUMBER N TO GENERIC
FUNCTION IS ASSUMED TO MATCH ITS
CORRESPONDING AGGREGATE
PARAMETER.

Example:

DCL G GENERIC

 (G1 WHEN(FIXED),

 G2 WHEN(FLOAT)),

 (G1,G2) ENTRY,

 ARR(1ð) FLOAT;

 CALL G(ARR);

Explanation: Matching of arguments and parameters
is not performed on aggregate arguments to generic
functions. Consequently, a mismatch will not be
detected and a run-time error could result.

IEL0641I S NESTING OF FUNCTIONS EXCEEDS
MAXIMUM.

COMPILER RESTRICTION. LEVEL OF
NESTING OF FUNCTIONS EXCEEDS
MAXIMUM. STATEMENT IGNORED.

Explanation: The nominal limit on the number of
nested functions in a source module is 50. However,
this limit can vary according to the length of the labels
prefixed to the PROCEDURE statements. If the
average length of the labels exceeds eight characters,
the maximum number of nesting levels will be less than
50.

IEL0642I S ARRAY D IN ELEMENT ASSIGNMENT.

INVALID USE OF ARRAY D IN ELEMENT
ASSIGNMENT. STATEMENT IGNORED.

Example:

DCL A(8,8);

I = A + J;

Explanation: An unsubscripted array reference cannot
appear on the right-hand side of an assignment to an
element variable.

IEL0643I S STRUCTURE D IN ARRAY OR ELEMENT
ASSIGNMENT.

INVALID USE OF STRUCTURE D IN
ARRAY OR ELEMENT ASSIGNMENT.
STATEMENT IGNORED.

Example:

70 PL/I for MVS & VM Messages and Codes

 IEL0644I S � IEL0651I E

DCL 1 A, 2 B, 2 C;

DCL (X,Y)(5);

I = A + J; (invalid)

X = Y + A; (also invalid)

Explanation: A structure cannot be used in an
assignment to an array or to an element variable.

IEL0644I S AGGREGATE D USED WHERE ELEMENT
REQUIRED.

AGGREGATE D USED WHERE
ELEMENT EXPRESSION IS REQUIRED.
STATEMENT IGNORED.

Example:

DCL A(1ð), B(1ð);

DO I = (A + B) TO 1ð;

END;

Explanation: A structure has been used where the
language requires an element expression.

IEL0645I S DIMENSIONS OF D DO NOT MATCH
FIRST AGGREGATE.

NUMBER OF DIMENSIONS IN
AGGREGATE D DOES NOT MATCH THE
FIRST AGGREGATE IN EXPRESSION.
STATEMENT IGNORED.

Example:

DCL A(6,6), B(6), C(6);

PUT EDIT (A + B + C))A)5));

Explanation: In an expression involving more than
one aggregate, all the aggregates involved must have
identical dimensions.

IEL0646I S BOUNDS OF D DO NOT MATCH FIRST
AGGREGATE.

BOUNDS OF AGGREGATE D DO NOT
MATCH THE FIRST AGGREGATE IN
EXPRESSION. STATEMENT IGNORED.

Explanation: In an expression involving more than
one aggregate, all the aggregates involved must have
identical dimensions.

IEL0647I S STRUCTURING OF D DOES NOT MATCH
FIRST STRUCTURE.

STRUCTURING OF D DOES NOT MATCH
THE FIRST STRUCTURE IN
EXPRESSION. STATEMENT IGNORED.

Example:

DCL 1 A, 2 B, 2 C,

1 X, 2 Y, 2 Z, 3 U;

PUT LIST(A + X);

Explanation: In an expression involving more than
one structure, all the structures involved must have
identical structuring.

IEL0648I S AGGREGATE D USED IN EXTENT
SPECIFICATION IN BLOCK.

AGGREGATE D USED FOR EXTENT
SPECIFICATION IN 'DECLARE' OR
'DEFAULT' STATEMENT FOR BLOCK
BEGINNING AT THIS STATEMENT.
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL 1 S,

 2 P,

 2 Q;

DCL 1 A,

2 B CHAR(5),

2 C CHAR(S);

Explanation: The implementation will assume that the
entire content of the aggregate is to be used as the
length specification. This can result in a run-time error.

IEL0649I E TARGET OF 'BYNAME' ASSIGNMENT
NOT A STRUCTURE.

TARGET OF ASSIGNMENT CONTAINING
'BYNAME' OPTION IS NOT A
STRUCTURE. OPTION IGNORED.

Example:

DCL (A,B) FIXED;

A = B, BY NAME;

Explanation: The BY NAME option can only be used
in a structure assignment.

IEL0650I S NO STRUCTURE IN SOURCE OF
'BYNAME' ASSIGNMENT.

NO STRUCTURE IN SOURCE OF
'BYNAME' ASSIGNMENT. STATEMENT
IGNORED.

Example:

DCL 1 A, 2 OR, 3 RE, 3 GR,

1 B, 2 OR, 3 RE, 3 BL;

A = 5,BY NAME;

Explanation: The BY NAME option has been used to
qualify the assignment of a value that is not a structure.

IEL0651I E D HAS WRONG STRUCTURE
ORGANIZATION.

STRUCTURE ORGANIZATION OF D IS
NOT THE SAME AS TARGET.
ASSIGNMENT MAY NOT BE
PERFORMED.

Explanation: Structures used in BYNAME assignment

 Chapter 1. Compile-Time and Macro Preprocessor Messages 71

 IEL0652I S � IEL0657I S

contain base elements with identical names but
attributes which do not match.

IEL0652I S INVALID USE OF D IN ARRAY 'INITIAL'
IN THIS BLOCK.

INVALID USE OF AGGREGATE D IN
ARRAY 'INITIAL' IN THIS BLOCK.
'INITIAL' ATTRIBUTE IGNORED.

Example:

DCL ARRAY1 (8,9),

ARRAY2 (8,9) INIT(ARRAY1),

ARRAY3 (8) INIT(ARRAY1(\,1));

Explanation: The INITIAL attribute for an array can
specify initial values for the array elements on an
individual basis only. The type of initialization
attempted above can be achieved by an assignment
statement.

IEL0653I W RESULTS MAY BE UNDEFINED IN
ASSIGNMENT TO 'REFER' STRUCTURE
D.

ASSIGNMENT TO STRUCTURE D
DECLARED WITH 'REFER' OPTION.
RESULTS UNDEFINED IF
'REFER'EXTENTS CHANGED BY
ASSIGNMENT.

Example:

DCL 1 A BASED(P1),2 B,2 C(X REFER B);

1 S BASED(P2),2 P,2 C(Y REFER P);

A=S;

This becomes

A.B = S.P; (ignored by the compiler

A.C = S.C; for mapping of C in

 this assignment)

Explanation: The values of the bounds or extents of
the REFER items in both source and target structures
are taken from the target before assignment. If these
values do not match in source and target, the values of
these extents or bounds in the target will be altered by
the assignment, and will not correspond to the REFER
items assigned to the target. Therefore, in any
subsequent references, the target is undefined.

Programmer Response: If the bounds or extents
differ, they should be made to match prior to the
assignment of the REFER items. The use of the BY
NAME option can be convenient in the structure
assignment once the REFER bounds or extents have
been correctly set up.

IEL0654I S DIMENSIONS OF D DO NOT MATCH
TARGET.

NUMBER OF DIMENSIONS OF
AGGREGATE D DOES NOT MATCH THE
TARGET OF THE ASSIGNMENT OR
DUMMY ARGUMENT. STATEMENT
IGNORE.

Example:

DCL A(5,6), B(5,6), C(5);

A = B + C;

Explanation: The number of dimensions of an
aggregate to be assigned must match the number of
dimensions of the target aggregate.

IEL0655I S BOUNDS OF D DO NOT MATCH
TARGET.

BOUNDS OF AGGREGATE D DO NOT
MATCH THE TARGET OF THE
ASSIGNMENT OR DUMMY ARGUMENT.
STATEMENT IGNORED.

Example:

DCL A(3,3), B(4,4), C(2:5,-3:-1);

A = A + B; (incorrect)

A = B + C; (also incorrect)

Explanation: The bounds for each dimension of an
aggregate to be assigned must match the bounds for
each dimension of the target aggregate.

IEL0656I S STRUCTURING OF D DOES NOT MATCH
TARGET.

STRUCTURING OF D DOES NOT MATCH
THE TARGET OF THE ASSIGNMENT OR
DUMMY ARGUMENT. STATEMENT
IGNORED.

Example:

DCL 1 A, 2 B, 2 C;

1 P, 2 Q, 2 R, 2 S;

A = P;

Explanation: Structures in a structure assignment
must have identical structuring.

IEL0657I S AGGREGATE D USED IN EXTENT
SPECIFICATION.

AGGREGATE D USED FOR EXTENT
SPECIFICATION IN 'ALLOCATE '
STATEMENT. STATEMENT IGNORED.

Example:

DCL X(\) CTL,

1 A, 2 B, 2 C;

ALLOCATE X(A);

72 PL/I for MVS & VM Messages and Codes

 IEL0658I S � IEL0671I W

IEL0658I S NO MATCHING IDENTIFIERS FOR
'BYNAME' ASSIGNMENT.

NO MATCHING IDENTIFIERS AT
CORRESPONDING LEVELS IN THE
STRUCTURES IN 'BYNAME'
ASSIGNMENT. STATEMENT IGNORED.

Example:

DCL 1 A, 2 B, 2 C,

1,X, 2 Y, 2 Z,

1 P, 2 Q, 2 R;

A = X, BY NAME; (incorrect)

A = P + X, BY NAME; (also incorrect)

Explanation: In order to use the BY NAME option in a
structure assignment, the structure should have
matching names at corresponding levels, otherwise no
assignment can take place.

IEL0659I U TOO MANY ACTIVE QUALIFIED
REFERENCES.

COMPILER RESTRICTION. TOO MANY
QUALIFIED REFERENCES ACTIVE IN
THIS STATEMENT. PHASE P.

Example:

DCL (A,B,C,...Z) (1ð);

A,B,C,...Z = A;

Explanation: A qualified reference can result from the
use of any of the following:

1. An item declared BASED

2. An item declared DEFINED

3. The first argument of the SUBSTR built-in function
or pseudovariable

4. A subscripted item or array expression

5. A multiple concatenation operation

 6. SUBSCRIPTRANGE checking

Explanation: A qualified reference is active only for
the statement that contains it, unless it is the control
variable of a DO-loop, when it is active throughout the
scope of the loop. The limit to the number of active
qualified references is 32; this limit will be exceeded
only if the statement with a qualified reference appears
in a nest of DO-loops with qualified control variables, or
if the statement is a multiple assignment with many
qualified references as targets, or if the statement is a
stream I/O statement containing more than 32 items
requiring active qualified references.

Programmer Response: Either simplify a multiple
assignment or change DO-loop control variables that
are qualified references to nonqualified references.

IEL0660I S [PROLOGUE CODE.] NONCONNECTED
ARGUMENT TO T.

[PROLOGUE CODE.] NONCONNECTED
ARGUMENT TO BUILTIN FUNCTION T
INVALID. STATEMENT IGNORED.

Explanation: STORAGE and CURRENTSTORAGE
built-in functions are only defined for variables which
could legally appear in the INTO or FROM option of a
record-oriented input/output statement. The INTO or
FROM option of a record-oriented input/output
statement must refer to an identifier that represents a
contiguous area of storage.

IEL0669I S BUILTIN T REQUIRES LANGLVL(SPROG)
COMPILER OPTION.

BUILTIN FUNCTION T REQUIRES
LANGLVL(SPROG) COMPILER OPTION.

Explanation: The built-in functions POINTERADD,
BINARYVALUE and POINTERVALUE require that the
LANGLVL(SPROG) compiler option be in effect.

Programmer Response: Specify the
LANGLVL(SPROG) compiler option or remove these
built-ins from your program.

IEL0670I W THE ADDRESS-MODE OF
NONAUTOMATIC ARGUMENT N MAY
CONFLICT WITH FETCHED ENTRY D.

Explanation: The argument flagged in the message is
either BASED, CONTROLLED, or STATIC, which might
be residing above the 16-megabyte line. If this
procedure runs in AMODE(31) and the fetched
procedure runs in AMODE(24), the parameter will not
be correctly interpreted and access to the parameter
can cause unpredictable failure.

Programmer Response: Check the fetched procedure
to ensure that it can run AMODE(31). If the called
procedure must be run with AMODE(24), declare the
argument as AUTOMATIC, or ensure that the argument
is below the 16-megabyte line. For more detailed
information, refer to the PL/I for MVS & VM
Programming Guide.

IEL0671I W [PROLOGUE CODE.] DUMMY CREATED
FOR ARGUMENT N TO ENTRY D.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D DOES NOT
MATCH ITS CORRESPONDING
PARAMETER OR IS AN ISUB-DEFINED
ARRAY. A DUMMY ARGUMENT HAS
BEEN CREATED.

Example:

DCL X ENTRY (FIXED);

CALL X(A);

 Chapter 1. Compile-Time and Macro Preprocessor Messages 73

 IEL0672I W � IEL0681I S

Explanation: Whenever an argument does not match
its parameter, the compiler generates a dummy
argument that does match the parameter. On
invocation of the entry point, the value of the argument
is converted and assigned to the dummy argument.
Similarly, when the argument is in ISUB-DEFINED
array, the compiler generates a dummy argument. On
invocation of the entry point, the value of the argument
is assigned to the dummy argument.

IEL0672I W [PROLOGUE CODE.] ARGUMENT N TO
T IGNORED.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO BUILTIN FUNCTION T IS
NOT REQUIRED FOR FLOATING POINT
RESULT. ARGUMENT IGNORED.

Example:

A = DIV(B,C,5,2);

Explanation: A superfluous argument has been given
in a reference to a built-in function.

IEL0673I I [PROLOGUE CODE.] ARGUMENT N TO T
IS NOT 'COMPLEX'.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO BUILTIN FUNCTION T
NOT COMPLEX. ZERO IMAGINARY
PART ASSUMED.

Example:

DCL A REAL;

A = REAL(A);

IEL0674I S INVALID ELEMENT EXPRESSION IN
'DO' OR 'IF'.

INVALID SPECIFICATION OF ELEMENT
EXPRESSION IN 'DO' OR 'IF'
STATEMENT. VALUE ONE ASSUMED
FOR EXPRESSION.

Example:

DCL SAM FILE;

IF SAM = PTR THEN...;

Explanation: The expression in a DO or IF statement
must be a valid element expression which can be
evaluated by the compiler.

IEL0675I S INVALID ITERATIVE SPECIFICATION.

INVALID ITERATIVE SPECIFICATION.
NONITERATIVE 'DO' ASSUMED.

Example:

LABEL: DO I = 1 TO LABEL;

IEL0676I I [PROLOGUE CODE.] ARGUMENT N TO
D ASSUMED TO BE ALIGNED.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D IS OF TYPE
'ENTRY' AND IS ASSUMED TO BE
ALIGNED.

IEL0677I S [PROLOGUE CODE] SOURCE OF
ASSIGNMENT DOES NOT MATCH
TARGET D.

[PROLOGUE CODE] ATTRIBUTES OF
SOURCE OF ASSIGNMENT STATEMENT
CONFLICT WITH TARGET D.
[STATEMENT IGNORED.] [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL LV LABEL VARIABLE,

FV FILE VARIABLE;

LV = FV;

Explanation: The variables LV and FV have unlike
and unresolvable attributes.

IEL0680I S ATTRIBUTES OF 'REPEAT'
EXPRESSION CONFLICT WITH THE
CONTROL VARIABLE.

ATTRIBUTES OF 'REPEAT'
EXPRESSION CONFLICT WITH THE
CONTROL VARIABLE. NONITERATIVE
'DO' ASSUMED.

Example:

DCL P POINTER;

DCL I FIXED BINARY;

DO I = 1 REPEAT(P);

IEL0681I S [PROLOGUE CODE.] ATTRIBUTES OF
ARGUMENT N TO ENTRY D CONFLICT
WITH PARAMETER.

[PROLOGUE CODE.] ATTRIBUTES OF
ARGUMENT NUMBER N TO ENTRY D
CONFLICT WITH THE CORRESPONDING
PARAMETER. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL A FILE,

X ENTRY (FLOAT);

 CALL X(A);

Explanation: The compiler has detected a conflict
between the attributes of an argument and its
parameter which cannot be resolved by creating a
dummy argument and performing a conversion.

74 PL/I for MVS & VM Messages and Codes

 IEL0682I S � IEL0689I S

IEL0682I S [PROLOGUE CODE.] ARGUMENT N TO
ENTRY D IS NOT 'CONTROLLED'.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D IS NOT
'CONTROLLED' BUT THE
CORRESPONDING PARAMETER IS.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL A,

E ENTRY (CONTROLLED);

CALL E(A);

Explanation: A parameter with the CONTROLLED
attribute must correspond to an argument with the
CONTROLLED attribute.

IEL0683I S [PROLOGUE CODE.] WRONG NUMBER
OF ARGUMENTS TO T.

[PROLOGUE CODE.] WRONG NUMBER
OF ARGUMENTS TO BUILTIN FUNCTION
T. STATEMENT IGNORED. [RESULTS
OF PROLOGUE UNDEFINED.]

Example:

J = SUBSTR(A,B,C,D);

Explanation: A built-in function with either too few or
too many arguments has been detected.

IEL0684I S [PROLOGUE CODE.] INVALID DATA
TYPE FOR ARGUMENT N TO T.

[PROLOGUE CODE.] ARGUMENT
NUMBER N HAS INCORRECT DATA
TYPE FOR BUILTIN FUNCTION T.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL F FILE;

A = SIN(F);

IEL0685I S [PROLOGUE CODE.] MODE OF
ARGUMENT N TO T IS INCORRECT.

[PROLOGUE CODE.] THE MODE OF
ARGUMENT NUMBER N TO BUILTIN
FUNCTION T IS INCORRECT.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL A COMPLEX;

B = CEIL(A);

IEL0686I S [PROLOGUE CODE.] ARGUMENT N TO T
IS NOT INTEGER CONSTANT.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO BUILTIN FUNCTION T IS
NOT AN INTEGER CONSTANT.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

A = DECIMAL(B,C,D)

IEL0687I S [PROLOGUE CODE.] CONSTANT OR
FUNCTION OR TEMPORARY RESULT
HAS INVALID ATTRIBUTES FOR
EXPRESSION.

[PROLOGUE CODE.] CONSTANT OR
FUNCTION OR TEMPORARY RESULT
HAS INVALID ATTRIBUTES FOR
EXPRESSION. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

L: A = 1;

B = 2 + L;

EC: PROC(Z) RETURNS(OFFSET);

B = 2 + EC(1);

Explanation: This message is issued for incorrect
usage of based or subscripted variables. If the pointer
arithmetic is utilized, the LANGLVL(SPROG) compiler
option must be specified.

IEL0688I S [PROLOGUE CODE.] ASSIGNMENT TO
CONSTANT.

[PROLOGUE CODE.] TARGET OF
ASSIGNMENT IS A CONSTANT.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Explanation: The target of an assignment can never
be a constant; it must always be a variable.

IEL0689I S [PROLOGUE CODE.] SOURCE OF
ASSIGNMENT DOES NOT MATCH
TARGET.

[PROLOGUE CODE.] ATTRIBUTES OF
SOURCE OF ASSIGNMENT CONFLICT
WITH TARGET. [STATEMENT
IGNORED.] [RESULTS OF PROLOGUE
UNDEFINED.]

Example:

DCL O OFFSET (A),

A AREA BASED (P);

O->A = X;

Explanation: The variables have unlike, and
unresolvable, attributes.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 75

 IEL0690I S � IEL0703I W

IEL0690I S [PROLOGUE CODE.] OPERAND D
INVALID IN ELEMENT EXPRESSION.

[PROLOGUE CODE.] INVALID USE OF
OPERAND D IN AN ELEMENT
EXPRESSION. STATEMENT IGNORED.
[RESULTS OF PROLOGUE UNDEFINED.]

Example:

DCL A(1ð), F FILE;

a. READ FILE(F) SET(P) KEY(A + B);

b. B = F + C;

Explanation: An element expression cannot refer to a
structure or unsubscripted array. Arithmetic operations
can never involve nonarithmetic data such as files or
events. Pointer arithmetic is allowed under the
LANGLVL(SPROG) compiler option.

IEL0691I U LEVEL OF NESTING FOR 'DO', OR 'IF',
OR 'SELECT' STATEMENT EXCEEDS N.

COMPILER RESTRICTION. LEVEL OF
NESTING FOR 'DO', OR 'IF', OR
'SELECT' STATEMENT EXCEEDS N.

IEL0692I S [PROLOGUE CODE.] ARGUMENT N TO
ENTRY D INVALID.

[PROLOGUE CODE.] ARGUMENT
NUMBER N TO ENTRY D INVALID.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

IEL0694I E [PROLOGUE CODE.] NO SELECTION
POSSIBLE FOR 'GENERIC' NAME.

[PROLOGUE CODE.] NO SELECTION
POSSIBLE FOR 'GENERIC' NAME.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL X FLOAT,

I FIXED BINARY,

 E ENTRY,

G GENERIC(E WHEN (FLOAT));

X = G(I);

Explanation: A reference to a generic name should
contain arguments with attributes that match the generic
descriptor list for one of the generic entry constants.

IEL0695I S [PROLOGUE CODE.] OPERANDS OF
COMPARE CONFLICT.

[PROLOGUE CODE.] ATTRIBUTES OF
OPERANDS IN AN EQUAL OR
NOT-EQUAL OPERATION CONFLICT.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

Example:

DCL F FILE;

L: IF L = F THEN...;

IEL0697I S [PROLOGUE CODE] SOURCE OF
ASSIGNMENT DOES NOT MATCH
TARGET D.

[PROLOGUE CODE.] ATTRIBUTES OF
SOURCE OF ASSIGNMENT STATEMENT
CONFLICT WITH THE TARGET D.
STATEMENT IGNORED. [RESULTS OF
PROLOGUE UNDEFINED.]

IEL0701I S 'FORTRAN' FUNCTION D NOT
ALLOWED IN ARGUMENT.

COMPILER RESTRICTION. 'FORTRAN'
FUNCTION D NOT ALLOWED IN
ARGUMENT. 'FORTRAN' OPTION
IGNORED.

Example:

DCL E ENTRY OPTIONS(FORTRAN);

CALL X(E(A));

Explanation: A function reference to a FORTRAN
program is not allowed as an argument other than to a
built-in function.

IEL0702I W 'NOMAP' SPECIFIED. MAPPING OF
PARAMETER N TO D MAY DIFFER IN T.

MAPPING OF PARAMETER N TO ENTRY
D MAY DIFFER IN PL/I AND T BUT
DUMMY PARAMETER NOT CREATED
BECAUSE OF 'NOMAP' OPTION.

Programmer Response: Ensure either that the
parameter and its corresponding argument are mapped
identically in the two language implementations or that
differences in mapping are allowed for in the
descriptions (or declarations) used in the two
languages.

IEL0703I W 'NOMAP' SPECIFIED. MAPPING OF
ARGUMENT N TO D MAY DIFFER IN T.

MAPPING OF ARGUMENT NUMBER N
TO ENTRY D MAY DIFFER IN PL/I AND T
BUT DUMMY ARGUMENT NOT
CREATED BECAUSE OF 'NOMAP'
OPTION.

Programmer Response: Ensure either that the
argument and its corresponding parameter are mapped
identically in the two language implementations or that
differences in mapping are allowed for in the
descriptions (or declarations) used in the two
languages.

76 PL/I for MVS & VM Messages and Codes

 IEL0704I S � IEL0711I S

IEL0704I S MORE THAN N ARGUMENTS TO T
ENTRY D.

COMPILER RESTRICTION. NUMBER OF
ARGUMENTS TO T ENTRY D EXCEEDS
N. EXCESS ARGUMENTS IGNORED.

Explanation: The maximum number of arguments that
can be passed to a FORTRAN, ASSEMBLER, or
COBOL routine in a single invocation is 64.

Programmer Response: Eliminate the excess number
of arguments. If necessary and feasible, make these
arguments known in both the invoking and invoked
routines by declaring them STATIC EXTERNAL in PL/I
and the equivalent to this in the invoked routine.

IEL0705I S EXTENTS OF PARAMETER N TO T
ENTRY D NOT FIXED.

EXTENTS OF PARAMETER N TO T
ENTRY D ARE NOT FIXED. RESULTS
OF EXECUTION UNDEFINED.

Example:

C: ENTRY(M) OPTIONS (COBOL);

DCL M CHAR(\); /\ invalid \/

E: ENTRY(P) OPTIONS (FORTRAN);

DCL P(\,\); /\ invalid \/

Explanation: All bounds and extents of parameters to
entry points invoked from COBOL or FORTRAN must
be specified as decimal integer constants.

IEL0706I I T MAPPING USED FOR DUMMY
ARGUMENT N TO D.

T MAPPING USED FOR DUMMY
ARGUMENT NUMBER N TO ENTRY D.

Example:

DCL CC ENTRY OPTIONS(FORTRAN),

(B,C) (3,2) FIXED BIN(27,ð);

CALL CC(B + C);

Explanation: COBOL or FORTRAN mapping has
been used for a dummy argument that has been
created for an argument that is to be passed to a
COBOL or FORTRAN routine.

IEL0707I I PL/I MAPPING USED FOR DUMMY
ARGUMENT N TO D.

PL/I MAPPING USED FOR DUMMY
ARGUMENT NUMBER N TO ENTRY D.

Example:

DCL FF ENTRY OPTIONS(COBOL,

 NOMAPIN(ARG1)),

 A(1ð,1ð);

CALL FF(A + I);

Explanation: A dummy argument is created for this
argument according to normal PL/I rules with the
NOMAPOUT option. The explicit use of the NOMAPIN
option will combine with NOMAPOUT to produce the
effective specification of the NOMAP option.

IEL0708I I DUMMY CREATED FOR ARGUMENT N
TO T ENTRY D.

MAPPING OF ARGUMENT NUMBER N
TO ENTRY D MAY DIFFER IN PL/I AND
T. DUMMY ARGUMENT CREATED.

Example:

DCL 1 A,

2 B CHAR(1),

2 C FIXED BIN(31,ð),

 X(1ð,1ð)

COB ENTRY OPTIONS(COBOL),

FORT ENTRY OPTIONS(FORTRAN);

CALL COB(A);

(message produced for A)

CALL FORT (X);

(message produced for X)

IEL0709I I DUMMY CREATED FOR PARAMETER N
TO T ENTRY D.

MAPPING OF PARAMETER N TO ENTRY
D MAY DIFFER IN PL/I AND T. DUMMY
PARAMETER CREATED.

Example:

F: ENTRY(X) OPTIONS(FORTRAN);

C: ENTRY(A) OPTIONS(COBOL);

DCL 1 A,

2 B CHAR(1),

2 C FIXED BIN(31,ð),

 X(1ð,1ð);

IEL0710I E D CONTAINS DATA INVALID FOR
'COBOL'.

RECORD VARIABLE D FOR 'COBOL'
FILE CONTAINS 'AREA' OR 'BIT' DATA
WITH NO EQUIVALENT IN 'COBOL'.
PL/I MAPPING ASSUMED FOR
VARIABLE.

Explanation: A PL/I data type specified for a COBOL
FILE has no equivalent in COBOL.

IEL0711I S T IGNORED FOR 'CALL ' WITH TASKING
OPTION.

T OPTION IGNORED FOR 'CALL ' WITH
TASKING OPTION.

Example:

DCL A ENTRY OPTIONS(COBOL);

CALL A TASK;

 Chapter 1. Compile-Time and Macro Preprocessor Messages 77

 IEL0712I W � IEL0721I E

Explanation: Interlanguage subroutines cannot be
tasks.

IEL0712I W PL/I MAPPING ASSUMED FOR ARRAY
RECORD VARIABLE.

RECORD VARIABLE IS AN ARRAY. PL/I
MAPPING ASSUMED FOR VARIABLE.

Example:

DCL 1 A(8),

 2 B,

 2 C,

 3 D(5);

DCL F FILE ENV(COBOL) RECORD;

READ FILE (F) INTO (A);

Explanation: A PL/I data type specified for a COBOL
file has no equivalent in COBOL.

IEL0713I S 'COBOL' FILE D INVALID IN
ASSIGNMENT OR AS ARGUMENT.

USE OF COBOL FILE D IN ASSIGNMENT
OR AS AN ARGUMENT IS INVALID.
'COBOL' OPTION WILL NOT APPLY TO
TARGET.

Example:

DCL PROC ENTRY (FILE),

COBFIL FILE ENV(COBOL...);

 CALL PROC(COBFILE);

IEL0714I W D CONTAINS DATA INVALID FOR
'COBOL'.

RECORD VARIABLE FOR 'COBOL' FILE
CONTAINS ELEMENT WITH NO DIRECT
EQUIVALENT IN 'COBOL'. 'COBOL'
MAPPING ASSUMED FOR VARIABLE.

Explanation: “A” has fractional precision which is not
available for fixed binary (COMPUTATIONAL) variables
in COBOL.

Programmer Response: If appropriate, correct the
data type attributes to one of those supported by the
interlanguage communication definition. For further
details see the Language Environment Programming
Guide.

IEL0715I E STATEMENT INVALID FOR 'COBOL'
FILE D.

STATEMENT INVALID FOR COBOL FILE
D. PL/I MAPPING ASSUMED FOR
RECORD.

Example:

DCL F FILE ENV(COBOL);

DELETE FILE(F);

IEL0716I E 'SET' OPTION INVALID FOR 'COBOL'
FILE D.

'SET' OPTION ON 'READ' STATEMENT
INVALID FOR COBOL FILE D. PL/I
MAPPING ASSUMED FOR RECORD.

Explanation: Locate mode input/output is not allowed
for a COBOL file. Move mode must be used.

IEL0717I 'EVENT' OPTION INVALID FOR
'COBOL' FILE D.

'EVENT' OPTION INVALID FOR COBOL
FILE D WHEN PL/I AND COBOL
MAPPING MAY DIFFER. PL/I MAPPING
ASSUMED FOR RECORD.

Example:

DCL F FILE ENV(COBOL),

 1 R,

2 S CHAR(1)

2 T FIXED BIN(31,ð);

 READ FILE (F) INTO (R) EVENT (EV);

Explanation: The EVENT option is allowed only if it
can be deduced at compile-time that the mapping of the
record will be the same in PL/I and COBOL.

IEL0720I E ARGUMENT N TO D CONTAINS DATA
INVALID FOR T.

ARGUMENT N TO ENTRY D CONTAINS
'AREA' OR 'BIT' DATA WITH NO
EQUIVALENT IN T. PL/I MAPPING
ASSUMED FOR ARGUMENT IF
AGGREGATE.

Example:

DCL I BIT (1ð), E ENTRY

EXTERNAL OPTIONS (FORTRAN);

CALL E(I);

Explanation: An argument which has no direct
equivalent in COBOL or FORTRAN has been
encountered in a CALL statement or function reference
to invoke a COBOL or FORTRAN routine. Note that
arguments with the attributes BIT(8) and BIT(32) are
acceptable to FORTRAN.

IEL0721I E PARAMETER N TO D CONTAINS DATA
INVALID FOR T.

PARAMETER N TO ENTRY D CONTAINS
'AREA' OR 'BIT' DATA WHICH HAS NO
EQUIVALENT IN T. PL/I MAPPING
ASSUMED FOR PARAMETER IF
AGGREGATE.

Example:

E: ENTRY (X,Y,Z) OPTIONS (COBOL);

DCL Y BIT(8);

78 PL/I for MVS & VM Messages and Codes

 IEL0722I E � IEL0729I S

Explanation: A parameter which has no direct
equivalent in COBOL or FORTRAN has been
encountered in a PROCEDURE or ENTRY statement
invoked from a COBOL or FORTRAN routine.

IEL0722I E ARGUMENT N TO 'COBOL' ENTRY D IS
AN ARRAY.

ARGUMENT N TO ENTRY D IS AN
ARRAY WHICH IS INVALID FOR
'COBOL'. PL/I MAPPING ASSUMED
FOR ARGUMENT.

Example:

DCL E ENTRY EXTERNAL OPTIONS (COBOL),

I(8) FIXED BIN;

 CALL E(I);

Explanation: COBOL data types do not include the
equivalent of PL/I arrays.

IEL0723I E PARAMETER N TO 'COBOL'ENTRY D IS
AN ARRAY.

PARAMETER N TO ENTRY D IS AN
ARRAY WHICH IS INVALID FOR
'COBOL'. PL/I MAPPING ASSUMED
FOR PARAMETER.

Example:

E: ENTRY (A,B,C) OPTIONS (COBOL);

DCL A(8) FIXED BIN;

Explanation: COBOL data types do not include the
equivalent of PL/I arrays.

IEL0724I W DATA IN ARGUMENT N TO D INVALID
FOR T.

ARGUMENT NUMBER N TO ENTRY D
CONTAINS ELEMENT WITH NO DIRECT
EQUIVALENT IN T.

Example:

DCL E ENTRY EXTERNAL OPTIONS (FORTRAN);

DCL I FIXED BIN (1ð,6);

CALL E(I);

Explanation: “I” should have the precision (n,0).

Programmer Response: If appropriate, correct the
data type attributes to one of those supported by the
interlanguage communication definition. For further
details see the Language Environment Programming
Guide.

IEL0725I W DATA IN PARAMETER N TO D INVALID
FOR T.

PARAMETER N TO ENTRY D CONTAINS
ELEMENT WHICH HAS NO DIRECT
EQUIVALENT IN T.

Example:

E: ENTRY (I,J,K) OPTIONS (COBOL);

DCL I FLOAT DEC (2ð);

Explanation: COBOL does not implement extended
precision floating-point variables, but only variables with
short precision (COMPUTATIONAL-1) or long precision
(COMPUTATIONAL-2).

Programmer Response: If appropriate, correct the
data type attributes to one of those supported by the
interlanguage communication definition. For further
details see the Language Environment Programming
Guide.

IEL0726I I EXTENDED PRECISION ITEM FOR D
VALID ONLY FOR 'FORTRAN' H
PROGRAMS.

AN ARGUMENT OR PARAMETER OR
RETURNED VALUE FOR ENTRY D HAS
EXTENDED PRECISION. VALID ONLY
FOR 'FORTRAN' PROGRAMS
COMPILED BY THE 'FORTRAN' H
COMPILER.

Explanation: This message is no longer issued.

IEL0727I S PARAMETER N TO T ENTRY D MUST
NOT BE 'CONTROLLED'.

PARAMETER N TO ENTRY D HAS
'CONTROLLED' STORAGE CLASS
WITH NO EQUIVALENT IN T. RESULTS
OF EXECUTION UNDEFINED.

Example:

E: ENTRY (I,J) OPTIONS (COBOL);

DCL J CONTROLLED;

IEL0728I I DATA TYPE RETURNED BY D INVALID
IN 'FORTRAN'.

DATA TYPE OF RETURNED VALUE
FROM PL/I ENTRY D HAS NO DIRECT
EQUIVALENT IN 'FORTRAN' BUT
ENTRY CAN BE INVOKED AS A
FUNCTION.

Explanation: This message is printed if a value
returned by a function is arithmetic with a precision
other than (n,0) or is a fixed-length character string.

IEL0729I S DATA TYPE RETURNED BY D INVALID
IN 'FORTRAN'.

DATA TYPE OF RETURNED VALUE
FROM 'FORTRAN'. FUNCTION D HAS
NO DIRECT EQUIVALENT IN
'FORTRAN'.

Explanation: This message is printed if the returned
value is arithmetic with a precision other than (n,0) or is
a fixed-length character string.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 79

 IEL0730I S � IEL0737I E

IEL0730I S ARGUMENT N TO T ENTRY D IS NOT
'CONNECTED'.

ARGUMENT N TO T ENTRY D IS NOT
'CONNECTED' AND THE 'NOMAP'
OPTION IS SPECIFIED. RESULTS OF
EXECUTION UNDEFINED.

Example:

DCL 1 A(3), 2 B, 3 C, 2 D,

E ENTRY EXTERNAL OPTIONS (COBOL, NOMAP);

CALL E (B);

Explanation: An argument must occupy a contiguous
area of storage when passed as a parameter to an
invoked routine.

IEL0731I I ARGUMENT N TO T ENTRY D ASSUMED
TO BE 'CONNECTED'.

ARGUMENT PASSED TO
UNCONNECTED PARAMETER N OF T
ENTRY D IS ASSUMED TO BE
CONNECTED.

Example:

E: ENTRY (A,B,D) OPTIONS

 (COBOL, NOMAP);

DCL 1 A(3), 2 B, 3 C, 2 D,

 3 E;

Explanation: A parameter must be a variable that
occupies a contiguous area of storage.

IEL0732I I DATA TYPE RETURNED BY D INVALID
IN 'FORTRAN'.

DATA TYPE OF RETURNED VALUE
FROM PL/I ENTRY D IS INVALID FOR
'FORTRAN'. ENTRY CANNOT BE
INVOKED AS A FUNCTION.

Explanation: If the returned value is a character
string, it should be fixed-length; if it is a bit string, it
should be BIT(8) or BIT(32).

IEL0733I W DATA TYPE RETURNED BY D INVALID
IN 'FORTRAN'.

DATA TYPE RETURNED VALUE FROM
'FORTRAN' FUNCTION D IS INVALID
FOR 'FORTRAN'.

Explanation: If the returned value is a character
string, it should be fixed-length; if it is a bit string, it
should be BIT(8) or BIT(32).

IEL0734I E ARGUMENT N TO D NOT CORRECTLY
ALIGNED FOR 'FORTRAN'.

ARGUMENT N TO ENTRY D IS NOT
CORRECTLY ALIGNED FOR 'FORTRAN'
AND THE 'NOMAP' OPTION IS
SPECIFIED. RESULTS OF EXECUTION
UNDEFINED.

IEL0735I W ARGUMENT N TO D NOT CORRECTLY
ALIGNED FOR T.

ARGUMENT N TO ENTRY D IS AN
ELEMENT WHICH MAY NOT BE
CORRECTLY ALIGNED FOR T. NO
DUMMY ARGUMENT CREATED.

Example:

DCL 1 A UNALIGNED,

2 B BIT(5),

2 C BIT(27),

FF ENTRY OPTIONS(FORTRAN);

 CALL FF(C);

/\ C IS AN UNALIGNED ELEMENT \/

Explanation: Although, according to PL/I rules, a
dummy argument is not created for an element
argument, the alignment of the argument might not be
acceptable as a parameter to a COBOL or FORTRAN
routine, and an addressing interrupt can occur when the
routine is invoked.

IEL0736I E STRUCTURE ARGUMENT N TO D
INVALID FOR 'FORTRAN'.

ARGUMENT N TO ENTRY D IS A
STRUCTURE WHICH IS INVALID FOR
'FORTRAN'. PL/I MAPPING ASSUMED
FOR ARGUMENT.

Example:

DCL E ENTRY EXTERNAL

 OPTIONS (FORTRAN),

1 I,2 J,2 K;

CALL E (I);

Explanation: FORTRAN data types do not include the
equivalent of PL/I structures.

IEL0737I E STRUCTURE PARAMETER N TO D
INVALID FOR 'FORTRAN'.

PARAMETER N TO ENTRY D IS A
STRUCTURE WHICH IS INVALID FOR
'FORTRAN'. PL/I MAPPING ASSUMED
FOR PARAMETER.

Explanation: FORTRAN data types do not include the
equivalent of PL/I structures.

80 PL/I for MVS & VM Messages and Codes

 IEL0738I I � IEL0758I W

IEL0738I I D CANNOT BE INVOKED AS FUNCTION
FROM 'FORTRAN'.

ENTRY D HAS NO PARAMETERS. THE
ENTRY CANNOT BE INVOKED AS A
FUNCTION FROM 'FORTRAN'.

Explanation: An entry point in PL/I without parameters
can only be invoked from FORTRAN by a CALL
statement.

IEL0739I S D HAS NO ARGUMENTS. 'FORTRAN'
OPTION IGNORED.

FUNCTION D HAS NO ARGUMENTS.
'FORTRAN' OPTION IGNORED.

Explanation: A FORTRAN function cannot be invoked
from a PL/I function reference that does not include an
argument.

IEL0740I S D CANNOT BE A FUNCTION.

'COBOL' OR 'ASSEMBLER ' ENTRY D
CANNOT BE INVOKED AS A FUNCTION.
INTERLANGUAGE OPTION IGNORED.

Example:

DCL SUB ENTRY OPTIONS(COBOL);

DCL (A,B);

A = SUB(B);

Explanation: A COBOL or ASSEMBLER procedure
cannot be invoked as a function by a PL/I program.

IEL0742I U AGGREGATE D EXCEEDS MAXIMUM
LENGTH.

COMPILER RESTRICTION.
AGGREGATE D EXCEEDS MAXIMUM
LENGTH. COMPILATION WILL BE
TERMINATED AFTER PHASE 'IQ'.

Example:

DCL A (256,256,256,256) FIXED BINARY;

Explanation: The maximum number of bytes in an
aggregate must be equal to or less than 2**31 - 1 bytes
for all but unaligned bit data. For unaligned bit
aggregates, the maximum number of bytes is 2**28 - 1.
There is a special exception for a structure that contains
an unaligned bit array. The position of all elements of
the unaligned bit array must be within 2**28 - 1 limit
from the start of the structure, independent of the size
of the array or structure.

IEL0743I S ARGUMENT N TO D INVALID.

COMPILER RESTRICTION. ARGUMENT
N TO ENTRY D IS AN ADJUSTABLE
STRING AGGREGATE. RESULTS OF
EXECUTION UNDEFINED.

Explanation: If an array or structure expression is
used as the argument to a function procedure or
subroutine procedure, then the length of any string
expression contained in it must be available to the
compiler during compilation. Therefore, only
constant-length strings can be used or the
corresponding parameter descriptor must specify the
string length.

IEL0756I W 'CHECK' CONDITION IS NOT
SUPPORTED.

'CHECK' CONDITION IS NOT
SUPPORTED. 'CHECK' CONDITION
IGNORED AT EXECUTION TIME.

Example:

(CHECK(A)): A = B;

Explanation: The CHECK condition appears in a
condition prefix, SIGNAL, REVERT or ON statement.
This condition is no longer supported by PL/I. APARs
related to this condition will not be accepted. The
condition is always disabled at execution time.

Programmer Response: See the books that provide
information on testing and debugging your program for
a replacement function for CHECK. Remove the use of
the CHECK condition to avoid performance loss.

If your program is syntactically and semantically correct
but compilation or run-time errors occur, remove the
use of the CHECK condition from your program.

IEL0758I W ARGUMENT N OF D HAS INVALID
VALUE.

COMPILER RESTRICTION. VALUE OF
ARGUMENT N OF BUILT-IN FUNCTION
'T' IS OUTSIDE THE PERMITTED
RANGE. ARGUMENT REPLACED BY
IMPLEMENTATION MAXIMUM
PRECISION.

Example:

DCL (A,B,C) FIXED DECIMAL (1ð,ð);

C = MULTIPLY (A,B,18,4);

Explanation: The implementation maximum precision
for fixed decimal is 15; the third argument is replaced
by 15.

Programmer Response: Change the source so that
the specified argument is not greater than:

15 for FIXED DECIMAL results
31 for FIXED BINARY results

 Chapter 1. Compile-Time and Macro Preprocessor Messages 81

 IEL0759I S � IEL0765I S

33 for FLOAT DECIMAL results
109 for FLOAT BINARY results

IEL0759I S INVALID USE OF FETCHED ENTRY
CONSTANT D.

INVALID USE OF FETCHED ENTRY
CONSTANT D. FETCHED PROCEDURES
MAY BE SPECIFIED ONLY IN
'FETCH'OR 'RELEASE' STATEMENTS
OR AS ENTRIES IN FUNCTION OR
SUBROUTINE REFERENCES.

Example:

DCL F1 EXT ENTRY;

DCL F2 ENTRY INIT (F1);

FETCH F1;

F2 = F1;

Explanation: F1 has been used invalidly in the
declaration of F2 and in the assignment to F2. The
assignment will be ignored and the INIT value ignored.
(This leaves F2 uninitialized.)

IEL0760I E BIT VALUE ZERO ASSUMED IN 'UNTIL'
EXPRESSION.

VARIABLE IN 'UNTIL' EXPRESSION
CANNOT BE CONVERTED TO BIT
STRING. BIT CONSTANT OF LENGTH
ONE AND VALUE ZERO ASSUMED.

Example:

DCL P POINTER;

 DO UNTIL(P);

Explanation: In the example, pointer P cannot be
converted to a bit string.

IEL0761I E VARIABLE IN CONDITIONAL
EXPRESSION CANNOT BE CONVERTED
TO BIT STRING.

VARIABLE IN CONDITIONAL
EXPRESSION CANNOT BE CONVERTED
TO BIT STRING. BIT CONSTANT OF
LENGTH AND VALUE ONE ASSUMED.

Example:

1. DCL F FILE;

IF F THEN X = Y;

2. DCL F FILE;

 SELECT;

WHEN(F) X = Y;

3. DCL F FILE;

DO I = 1 WHILE(F);

Explanation: Only string and arithmetic element
variables and constants are allowed in the conditional

clause of an IF or WHEN statement or WHILE or UNTIL
expression.

IEL0762I W TOO FEW ARGUMENTS IN CALL TO D.

FEWER ARGUMENTS THAN
PARAMETERS FOR CALL TO
'ASSEMBLER ' PROCEDURE D.

Example:

DCL P ENTRY(FIXED,FIXED)

 OPTIONS(ASSEMBLER);

CALL P(A);

Explanation: An assembly language external
procedure has been invoked with fewer arguments than
the number of parameters to the corresponding
DECLARE statement.

IEL0763I E NEGATIVE SECOND ARGUMENT TO
'BIT' OR 'CHAR'.

NEGATIVE SECOND ARGUMENT TO
'BIT' OR 'CHAR' BUILTIN FUNCTION.
ZERO ASSUMED.

Example:

PUT LIST(BIT(I,-3));

Explanation: The second argument to the 'BIT' or
'CHAR' built-in function specifies the string length for
the converted first argument. This length cannot be
negative.

IEL0764I E LENGTH OF STRING OPERATION
RESULT EXCEEDS N.

COMPILER RESTRICTION. LENGTH OF
RESULT OF STRING OPERATION
EXCEEDS N. LENGTH OF N ASSUMED.

Example:

DCL (A,B) CHAR(32767);

C = A||B;

Explanation: A character string cannot exceed 32767
characters in length and a graphic string cannot exceed
16383 graphics in length.

IEL0765I S NONCONSTANT VALUE IN STATIC
INITIAL FOR D IN THIS BLOCK.

NONCONSTANT VALUE IN A STATIC
'INITIAL' SPECIFICATION FOR
VARIABLE D IN THE BLOCK BEGINNING
WITH THIS STATEMENT. 'INITIAL'
SPECIFICATION IGNORED.

Example:

DCL X(2) STATIC INITIAL(Y);

Explanation: Only constants can appear in the
INITIAL attribute for STATIC variables.

82 PL/I for MVS & VM Messages and Codes

 IEL0766I E � IEL0771I W

IEL0766I E 'REPEAT' STRING RESULT EXCEEDS
MAXIMUM LENGTH.

COMPILER RESTRICTION. STRING
RESULT FROM 'REPEAT' BUILTIN
FUNCTION GREATER THAN ALLOWED
MAXIMUM LENGTH. ZERO REPETITION
FACTOR ASSUMED.

Example:

A = REPEAT('XXX',4ðððð);

Explanation: The result should not produce a string
greater than 32,767 characters (or bits) in length.

IEL0767I E NEGATIVE REPETITION FACTOR FOR
'REPEAT'.

NEGATIVE REPETITION FACTOR
SPECIFIED FOR 'REPEAT' BUILTIN
FUNCTION. ZERO REPETITION FACTOR
ASSUMED.

Example:

A = REPEAT('XXX',-2);

IEL0768I W CONSTANT SPECIFIED WHERE
EXPRESSION EXPECTED.

CONSTANT SPECIFIED WHERE
EXPRESSION EXPECTED. FLOW OF
CONTROL WILL BE UNCONDITIONAL.

Example:

IF 1 THEN ...;

 ELSE ...;

(The THEN clause will always be run.)

IF ð THEN ...;

 ELSE ...;

(The ELSE clause will always be run.)

 DO WHILE(1);

 END;

(The loop will always be run and might be

 permanent).

 DO WHILE(ð);

 END;

(The loop will never be run.)

 DO UNTIL(1);

 END;

(The loop will be run once and only once.)

 DO UNTIL(ð);

 END;

(The loop will be run repeatedly and might

 be permanent.)

 SELECT;

 WHEN(1)...;

 OTHERWISE...;

 END;

(The WHEN unit will be run.)

 SELECT;

 WHEN(ð)...;

 OTHERWISE...;

 END;

(The OTHERWISE unit will be run.)

Explanation: A constant has been supplied in an IF
statement, a WHILE or UNTIL expression, or in a
WHEN statement (there being no SELECT expression).
Running the statement can result in one flow of control
only.

IEL0769I S AREA VARIABLE FOR OFFSET D
INVALID.

COMPILER RESTRICTION.
SPECIFICATION OF AREA VARIABLE
ASSOCIATED WITH OFFSET D NOT
VALID IN THIS STATEMENT.

Explanation: See the relevant section of the language
reference manual for this compiler for an explanation of
the language restrictions concerning the use of qualified
AREA variables.

IEL0770I W THIRD ARGUMENT TO 'MPSTR' BUILTIN
FUNCTION IS NEGATIVE. ZERO
ASSUMED.

Explanation: The third argument is used to determine
the length of the resulting string. It cannot be less than
zero.

 IEL0771I W THE DBCS ORDERING FACILITY WAS
NOT FOUND OR THE FACILITY WAS
NOT LOADED DUE TO INSUFFICIENT
STORAGE. BINARY SEQUENCE
ASSUMED.

Explanation: The DBCS ordering program is not
available. DBCS identifiers cannot be put in the XREF
portion of the listing according to a natural sequence.
However, the DBCS identifiers will be put in the listing
using the identifier's binary sequence.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 83

 IEL0772I W � IEL0798I S

 IEL0772I W DBCS IDENTIFIER '<kkkk>' CONTAINS
AN UNENCODABLE DOUBLE-BYTE
CHARACTER.

Explanation: This message applies only to MVS
systems.

The specified DBCS identifier in the message contains
at least one character that is not recognized by the
DBCS Ordering Product.

IEL0775I W CONSTANT ITERATION FACTOR
EXCEEDS 65,535.

COMPILER RESTRICTION. COMPILER
ITERATION FACTOR IN INITIAL
ATTRIBUTE FOR STATIC ARRAY
CANNOT EXCEED 65,535. FIRST 65,535
ELEMENTS INITIALIZED.

Example:

DCL 1 A(48ðð) STATIC,

2 B(2ð) FIXED DEC (1,ð)

 INIT ((96ððð)1);

Explanation: The iteration factor in an INITIAL list for
an array cannot exceed 65,535. Only the first 65,535
elements of the array will be initialized.

Programmer Response: Multiple iteration factors can
be specified, each less than 65,535. For example, the
above INITIAL attribute can be coded: INIT
((64000)1,(32000)1);

IEL0776I E CONSTANT SUBSCRIPT OF D OUT OF
RANGE.

VALUE OF CONSTANT SUBSCRIPT FOR
ARRAY D IS OUT OF RANGE BUT HAS
NOT BEEN REPLACED.

Example:

(SUBSCRIPTRANGE):PIG:PROC;

 DCL A(2,3);

A(6,3) = 1;

 END;

IEL0777I W TOO MANY ITEMS IN 'INITIAL' LIST
FOR D.

TOO MANY ITEMS IN 'INITIAL' LIST
FOR ARRAY D. REDUNDANT ITEMS
IGNORED.

Example:

DCL A(2) INIT(1,2,3);

IEL0778I S 'ISUB' VARIABLE FOR D OUT OF
RANGE.

'ISUB' VARIABLE FOR DEFINED
ARRAY D OUT OF RANGE. RESULTS
OF EXECUTION UNDEFINED.

IEL0779I S INVALID REPETITION FACTOR IN
'INITIAL' FOR D.

ZERO OR NEGATIVE REPETITION
FACTOR IN 'INITIAL' ATTRIBUTE FOR
ARRAY D. REPETITION FACTOR
IGNORED.

Example:

DCL A(1ð) INIT((ð)1,(-2)1);

IEL0787I W INITIAL VALUE OF ITERATIVE
SPECIFICATION OUT OF RANGE.

INITIAL VALUE OF ITERATIVE
SPECIFICATION IS OUTSIDE THE
RANGE OF THE 'BY' AND 'TO'
EXPRESSIONS. LOOP WILL NOT BE
EXECUTED.

Example:

1. DO I = 1 BY -2 TO 1ð;

2. DO I = 1 BY 3 TO -1ð;

IEL0792I W TITLE OPTION REQUIRED ON OPEN
STATEMENT FOR FILE '<kkkk>'.

Example:

OPEN FILE(<kkkk>);

Explanation: The non-EBCDIC DBCS file name
cannot be used as an external name. The TITLE option
must be added to supply an EBCDIC name for the host
system.

IEL0798I S INVALID IDENTIFIER IN CHECK LIST.

INVALID IDENTIFIER IN CHECK LIST.
IDENTIFIER IGNORED.

Example:

(CHECK(F)): P:PROC;

DCL F FILE;

Explanation: The identifier in the check list must be a
variable, or a label or entry constant.

Programmer Response: Remove the invalid identifier
from the name list in the CHECK condition prefix.

84 PL/I for MVS & VM Messages and Codes

 IEL0799I W � IEL0805I S

IEL0799I W AREA ASSOCIATED WITH OFFSET D
MAY BE INVALID FOR LOCATOR
CONVERSION IN 'RETURN'.

COMPILER RESTRICTION. AREA
ASSOCIATED WITH OFFSET D INVALID
FOR LOCATOR CONVERSION FOR
'RETURN' STATEMENT. 'RETURN'
EXPRESSION WILL BE IGNORED IF THE
INVALID COMBINATION OF 'RETURN'
AND 'ENTRY' IS USED.

Example:

P: PROC RETURNS (OFFSET(A));

Q: ENTRY RETURNS (POINTER);

DCL A AREA BASED,

 PTR POINTER,

 RETURN (PTR);

Explanation: If locator conversion is required in a
RETURN statement, the offset must have an associated
area. The area must be unsubscripted, it cannot be
defined; if it is based it must be based on an explicit
nonbased, nondefined unsubscripted pointer.

Programmer Response: Ensure that the combination
of return expression and entry type never requires
locator conversion to be performed.

IEL0800I S INVALID SPECIFICATION IN 'WAIT'.

INVALID SPECIFICATION OF NUMBER
OF EVENTS IN 'WAIT' STATEMENT.
SPECIFICATION IGNORED.

Example:

DCL (E1,E2) EVENT, F FILE;
...

WAIT (E1,E2)(F);

Explanation: The number of events specification in
the WAIT statement must be convertible to a FIXED
BINARY integer.

IEL0801I S INVALID EXPRESSION IN 'DELAY'.

INVALID EXPRESSION IN 'DELAY'
STATEMENT. ZERO ASSUMED.

Example:

DCL F FILE;

DELAY (F);

Explanation: The expression in the DELAY statement
must be convertible to a FIXED BINARY integer.

IEL0802I S INVALID EXPRESSION IN 'RETURN'.

INVALID EXPRESSION IN 'RETURN'
STATEMENT. EXPRESSION IGNORED.

Example:

DCL C CONDITION;

RETURN (C);

Explanation: The expression in a RETURN statement
must be problem data or locator, area, label, event, file,
or task program control data.

IEL0803I S INVALID 'DISPLAY' EXPRESSION.

'DISPLAY' EXPRESSION IS NOT A
VALID DATA TYPE OR ELEMENT
EXPRESSION. STATEMENT IGNORED.

Example:

DCL F FILE;

DISPLAY (F);

Explanation: The argument of a DISPLAY statement
must be an element expression that can be converted
to character form.

IEL0804I W 'DISPLAY' STRING LENGTH EXCEEDS
72.

STRING LENGTH FOR 'DISPLAY'
EXCEEDS 72 CHARACTERS. TERMINAL
MAY NOT SUPPORT THIS [FIRST N
CHARACTERS USED].

Example:

DCL A CHAR (15ð);

DCL B CHAR(8ð);

DISPLAY (A);

DISPLAY (B);

Explanation: The first 126 characters of a DISPLAY
expression will always be transmitted to the terminal,
but if the terminal cannot display more than 72 bytes,
and cannot continue the record on a succeeding line,
only the first 72 characters will be displayed.

If the length of the DISPLAY expression is more than
126, only the first 126 characters will be displayed, even
if there is no restriction on the terminal used by the
system.

In the example above, DISPLAY(A) will display the first
126 bytes, although they might be on multiple lines.
DISPLAY(B) will display 80 bytes, and perhaps all of
the message text, although the text might be on multiple
lines.

IEL0805I S 'REPLY' CONTAINS NON-ELEMENT
EXPRESSION.

'REPLY' EXPRESSION IS NOT A
CHARACTER STRING EXPRESSION.
'REPLY' OPTION IGNORED.

Example:

DCL ABC(2,3) FIXED BINARY;

DISPLAY('MESSAGE') REPLY(ABC(1,1));

Explanation: The expression in the REPLY statement
is not a character string variable. The REPLY option is

 Chapter 1. Compile-Time and Macro Preprocessor Messages 85

 IEL0806I E � IEL0818I S

ignored. If an EVENT option is present, this too is
ignored.

IEL0806I E 'REPLY' STRING LENGTH EXCEEDS N.

COMPILER RESTRICTION. STRING
LENGTH FOR 'REPLY' TOO LONG.
FIRST N CHARACTERS USED.

Example:

DCL R CHAR(1ðð);

DISPLAY('MESSAGE') REPLY(R);

Explanation: The length of the REPLY expression is
more than 72 bytes. Only the first 72 bytes of the
message are accepted.

IEL0808I W T NOT ENABLED. 'SIGNAL' IGNORED.

T CONDITION NOT ENABLED.
STATEMENT IGNORED.

Example:

(NOZERODIVIDE):PIG:PROC;

 SIGNAL ZERODIVIDE;

 END;

Explanation: The SIGNAL statement for a disabled
condition acts as a null statement.

IEL0809I W 'CHECK' NOT ENABLED FOR D.

'CHECK' CONDITION NOT ENABLED
FOR VARIABLE D IN SIGNAL
STATEMENT. VARIABLE IGNORED.

Example:

(CHECK(A,B)):PIG:PROC;

 SIGNAL CHECK(A,B,C);

 END;

Explanation: The syntax of the CHECK condition is
still analyzed at compile time; however, the CHECK
condition is no longer supported and is always disabled
at run time.

IEL0810I S INVALID EXPRESSION IN 'PRIORITY'
OPTION.

INVALID EXPRESSION IN 'PRIORITY'
OPTION. OPTION IGNORED.

Explanation: The expression in the PRIORITY option
must represent an integer value with the precision
(15,0).

IEL0811I S INVALID SPECIFICATION OF 'IGNORE'
EXPRESSION.

INVALID SPECIFICATION OF 'IGNORE'
EXPRESSION. VALUE ONE ASSUMED.

Example:

DCL F FILE;

READ FILE(F) IGNORE(F);

Explanation: The expression in the IGNORE option
must represent an arithmetic integer value.

IEL0812I S 'KEY' SPECIFICATION INVALID.

'KEY' SPECIFICATION INVALID.
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL F FILE, A(5) FIXED;

READ FILE(F) INTO(A) KEY(A);

Explanation: The expression in the KEY option must
represent a valid key derived from a character string or
an arithmetic variable.

IEL0816I S ATTRIBUTES OF D CONFLICT WITH
USE.

CONFLICT BETWEEN ATTRIBUTES OF
FILE D AND ITS USE IN THIS
STATEMENT. STATEMENT IGNORED.

Example:

DCL F FILE OUTPUT;

READ FILE(F) INTO(A);

IEL0817I S RECORD VARIABLE INVALID.

RECORD VARIABLE INVALID.
STATEMENT IGNORED.

Example:

DCL 1 A, 2 B BIT(M) UNALIGNED,

2 C BIT(N) UNALIGNED;

DCL F FILE;

READ FILE(F) INTO (B);

Explanation: The variable named in the INTO or
FROM option cannot be an unaligned and nonvarying
bit string that is also based, defined, a parameter, or
contained in an aggregate. Neither can it be any minor
structure that starts or ends with an unaligned,
nonvarying bit string.

IEL0818I S INVALID SET OF OPTIONS.

INVALID SET OF OPTIONS ON RECORD
I/O STATEMENT. STATEMENT
IGNORED.

Example:

REWRITE FILE(F) EVENT(E);

Explanation: The input/output statement has an
invalid or incomplete set of options. In the example
above, the FROM option is missing.

86 PL/I for MVS & VM Messages and Codes

 IEL0819I I � IEL0840I S

IEL0819I I RECORD I/O FUNCTION OPTIMIZED.

RECORD I/O FUNCTION OPTIMIZED. NO
LIBRARY SUBROUTINE CALL
REQUIRED.

Explanation: Under certain circumstances, the
compiler will generate inline code for record-oriented I/O
statements.

IEL0820I S ATTRIBUTES OF D CONFLICT WITH
THOSE ON 'OPEN'.

ATTRIBUTES ON 'OPEN' STATEMENT
CONFLICT WITH THOSE DECLARED
FOR FILE D. 'UNDEFINEDFILE'
CONDITIONS MAY BE RAISED ON
ATTEMPT TO OPEN THE FILE.

Example:

DCL F FILE INPUT;

OPEN FILE(F) OUTPUT;

IEL0827I E 'PAGESIZE' OR 'LINESIZE' CONFLICT
WITH ATTRIBUTES OF D.

SPECIFICATION OF 'PAGESIZE' OR
'LINESIZE' OPTIONS CONFLICTS WITH
ATTRIBUTES OF FILE D.

Explanation: The PAGESIZE option can only be
specified for PRINT files. The LINESIZE option can
only be specified for STREAM OUTPUT files (including
PRINT files).

IEL0828I S INVALID 'TITLE' 'PAGESIZE' OR
'LINESIZE' FOR D.

INVALID SPECIFICATION OF 'TITLE'
'PAGESIZE' OR 'LINESIZE' OPTION
FOR FILE D. OPTION IGNORED.

Explanation: Arguments to the option PAGESIZE and
LINESIZE must be expressions that represent an
arithmetic value. The argument to the TITLE option
must be an expression that represents a
character-string value.

IEL0830I S NO ACCESS 'ENV' OPTION FOR
'DIRECT' FILE D.

'DIRECT' ATTRIBUTE BUT NO ACCESS
TYPE 'ENVIRONMENT' OPTION FOR
FILE D. 'UNDEFINEDFILE' MAY BE
RAISED ON ATTEMPT TO OPEN THE
FILE.

Example:

DCL D FILE DIRECT;

Explanation: INDEXED, REGIONAL, or VSAM must
be specified in the ENVIRONMENT option for a file with
the DIRECT attribute.

Programmer Response: Specify access type in
ENVIRONMENT option.

IEL0834I S ATTRIBUTES AND ENVIRONMENT
OPTIONS FOR D CONFLICT.

ATTRIBUTES AND 'ENVIRONMENT'
OPTIONS FOR FILE D CONFLICT.
'UNDEFINEDFILE' MAY BE RAISED ON
ATTEMPT TO OPEN THE FILE.

Example:

DCL A FILE DIRECT ENV(CONSECUTIVE...);

IEL0835I S INVALID ATTRIBUTES FOR D IGNORED.

INVALID ATTRIBUTE(S) FOR FILE D
IGNORED.

IEL0836I S T FOR D CONFLICTS WITH PREVIOUSLY
DECLARED ATTRIBUTES.

ATTRIBUTE T IN FILE D CONFLICTS
WITH ONE PREVIOUSLY DECLARED
AND IS IGNORED.

Example:

DCL F FILE STREAM;

OPEN FILE(F) PRINT INPUT;

IEL0837I S INVALID 'ENVIRONMENT' OPTION(S)
FOR D IGNORED.

INVALID 'ENVIRONMENT' OPTION(S)
FOR FILE D IGNORED.

IEL0838I S T FOR D CONFLICTS WITH PREVIOUSLY
DECLARED OPTIONS.

'ENVIRONMENT' OPTION T IN FILE D
CONFLICTS WITH ONE PREVIOUSLY
DECLARED AND IS IGNORED.

Example:

DCL F FILE ENV (INDEXED F RECSIZE(8ð) CONSECUTIVE...);

 | |

 |----------------------|

 | these conflict |

IEL0840I S INVALID OPTION(S) ON 'CLOSE' FOR D.

INVALID 'ENVIRONMENT' OPTION(S)
ON 'CLOSE' STATEMENT FOR FILE D.
OPTION(S) IGNORED.

Explanation: The only option allowed in a CLOSE
statement is the LEAVE option.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 87

 IEL0848I S � IEL0857I S

IEL0848I S INVALID 'GET' OR 'PUT' STATEMENT
IGNORED.

'GET' OR 'PUT' STATEMENT
REFERENCES A 'RECORD' FILE.
STATEMENT IGNORED.

Explanation: A GET or PUT statement can only
reference a file with the STREAM attribute.

IEL0849I E INVALID 'E' OR 'F' FORMAT ITEM.

COMPILER RESTRICTION. THE
NUMBER OF DIGITS AFTER THE
DECIMAL POINT IN AN 'E' OR 'F'
FORMAT ITEM IS GREATER THAN N. N
IS ASSUMED.

IEL0850I E INVALID 'E' OR 'F' FORMAT ITEM.

THE NUMBER OF DIGITS AFTER THE
DECIMAL POINT IN AN 'E' OR 'F'
FORMAT ITEM IS NEGATIVE. ZERO IS
ASSUMED.

IEL0851I E CONFLICTING OPTIONS. T IGNORED.

CONFLICTING OPTIONS IN 'PUT'
STATEMENT. OPTION T IGNORED.

Example:

PUT FILE(A) SKIP(3) PAGE;

PUT FILE(B) LINE(3) SKIP(1);

Explanation: The only legal combination of PAGE,
SKIP, and LINE is PAGE and LINE.

IEL0852I E T VALID ONLY FOR PRINT FILES.

T VALID ONLY FOR PRINT FILES.
OPTION IGNORED.

Example:

DCL A FILE STREAM INPUT;

OPEN FILE (A);

PUT FILE (A) LINE(3) LIST(B,C);

Explanation: The options LINE and PAGE are allowed
only on statements referring to STREAM OUTPUT
PRINT files.

IEL0853I W D NOT ARITHMETIC OR STRING.

DATA LIST ITEM D NOT ARITHMETIC
OR STRING. ITEM IGNORED.

Example:

DCL (D,E) CHAR(8), F AREA;

GET LIST (D,E,F);

Explanation: Elements in a data list must have
arithmetic or string data type, that is they must be
problem data.

IEL0854I S CONSTANT IN 'GET' OR 'PUT' DATA
LIST.

CONSTANT INVALID IN DATA LIST IN
'GET' OR 'PUT' 'DATA' STATEMENT.
DATA ITEM DELETED.

Example:

DCL C FILE,

(D,E) ENTRY EXT;

PUT FILE (C) SKIP DATA (D,E);

IEL0855I S INVALID STRING OPTION OR GRAPHIC
ITEM.

'STRING' OPTION DOES NOT CONTAIN
A CHARACTER STRING VARIABLE OR
GRAPHIC ITEM IS NOT ALLOWED IN
'GET' OR 'PUT' STRING. STATEMENT
IGNORED.

Example:

DCL A FIXED BIN;

PUT STRING(A) LIST(B,C,D);

Explanation: The variable referred to by the STRING
option must be a character string variable; or a graphic
item cannot be used in a GET STRING or PUT
STRING statement.

IEL0856I E NO DATA ITEM IN FORMAT LIST.

NO DATA FORMAT ITEM IN FORMAT
LIST. FORMAT LIST WILL BE USED
ONLY ONCE. DATA LIST IGNORED.

Example:

PUT EDIT(A) (X(4));

Explanation: Data items cannot be transmitted unless
a data format item is given in the format list. No
assumptions are made.

IEL0857I S CONTROL FORMAT ITEM(S) INVALID
WITH 'STRING' OPTION.

INVALID CONTROL FORMAT ITEM(S) IN
'GET' OR 'PUT' STATEMENT WITH
'STRING' OPTION. FORMAT ITEM(S)
IGNORED.

Example:

DCL (NAME, A, B) CHAR;

PUT STRING(NAME) EDIT(A,B) (F(5),PAGE,F(5));

Explanation: Control format items SKIP, LINE, PAGE,
and COLUMN are not allowed in GET STRING or PUT
STRING statements.

88 PL/I for MVS & VM Messages and Codes

 IEL0858I S � IEL0867I S

IEL0858I S INVALID 'A' OR 'B' FORMAT ITEM.

INVALID 'A' OR 'B' FORMAT ITEM IN
'GET' STATEMENT. 'A(1)' OR 'B(1)'
ASSUMED.

Example:

DCL CHAR1 CHAR(8), BIT1 BIT(2);

GET EDIT(CHAR1,BIT1) (A(),B());

Explanation: An A-format item must be specified with
an explicit width when used in GET statements.

IEL0859I W 'A' OR 'B' FORMAT ITEM INVALID IF
USED BY 'GET'.

'A(1)' OR 'B(1)' ASSUMED FOR 'A' OR
'B' FORMAT ITEM IF FORMAT LIST IS
USED BY A 'GET' STATEMENT.

Example:

F: FORMAT (A);

GET EDIT(CHAR) (R(F));

Explanation: An A-format or B-format item must be
specified with an explicit width when used in GET
statements.

IEL0860I E WIDTH IN FORMAT ITEM EXCEEDS N.

COMPILER RESTRICTION. WIDTH IN
FORMAT ITEM IS GREATER THAN N. N
ASSUMED.

Example:

PUT EDIT(A,B) (F(5),X(43ððð),F5));

Explanation: An A-format item cannot have a width
that is greater than 32767.

IEL0861I W 'E' FORMAT ITEM WIDTH TOO SMALL
FOR NEGATIVE VALUES.

'E' FORMAT ITEM HAS WIDTH TOO
SMALL FOR MINUS SIGN TO BE
PRINTED.

Example:

A = -3.57;

PUT EDIT(A) (E(8,2,3));

Explanation: In the above example, the resultant
output should be “-3.57E+00” which is nine characters
whereas the width allowed in the PUT statement is only
eight characters. This will cause the minus sign to be
lost.

IEL0862I S 'E' FORMAT ITEM WIDTH TOO SMALL
FOR DATA.

'E' FORMAT ITEM HAS WIDTH TOO
SMALL FOR COMPLETE OUTPUT OF
THE ITEM. ITEM IGNORED.

Example:

A = -3,57;

PUT EDIT(A) (E(7,2,3));

Explanation: In the above example, the resultant
output should be “3.57E+00” which is nine characters
whereas the width allowed in the PUT statement is only
seven characters. This would cause the minus sign
and the most significant digit to be lost; therefore, the
complete item is ignored.

IEL0863I S INVALID ARGUMENT TO 'E' OR 'F'
FORMAT ITEM.

INVALID ARGUMENT TO 'E' OR 'F'
FORMAT ITEM. FORMAT ITEM
IGNORED.

Example:

PUT EDIT(A) (E(8,4,3));

IEL0864I E 'PAGE' OR 'LINE' IN 'GET' OR 'PUT'
IGNORED.

INVALID 'PAGE' OR 'LINE' FORMAT
ITEM IN 'GET' OR 'PUT' STATEMENT.
FORMAT ITEM IGNORED.

IEL0865I W 'PAGE' OR 'LINE' IGNORED FOR
'GET'.

'PAGE' OR 'LINE' FORMAT ITEM WILL
BE IGNORED IF FORMAT LIST IS USED
BY A 'GET' STATEMENT.

IEL0866I S SECOND ARGUMENT TO T INVALID.

SECOND ARGUMENT OF BUILTIN
FUNCTION T TOO LARGE OR TOO
SMALL. VALUE ONE ASSUMED.

Example:

DCL A(3,4);

I = HBOUND(A,3);

IEL0867I S INVALID ARGUMENT TO 'ALLOCATION '
FUNCTION.

ARGUMENT TO 'ALLOCATION ' BUILTIN
FUNCTION NOT LEVEL ONE
'CONTROLLED'. FUNCTION RETURNS
ZERO VALUE.

Example:

 Chapter 1. Compile-Time and Macro Preprocessor Messages 89

 IEL0868I S � IEL0875I W

a. DCL A AUTOMATIC;

I = ALLOCATION(A);

b. DCL 1 B, 2 C, 2 D;

I = ALLOCATION(C);

Explanation: The argument to the ALLOCATION
built-in function must be a level-1 controlled variable.

IEL0868I S INVALID ARGUMENT TO T.

INVALID ARGUMENT TO BUILTIN
FUNCTION T. FUNCTION RETURNS
NULL VALUE.

Example:

DCL A FIXED,

 C AREA,

 D PTR,

 E OFFSET;

D = POINTER(A,C);(1st argument

 invalid)

D = POINTER(E,A);(2nd argument

 invalid)

E = OFFSET(A,C); (1st argument

 invalid)

E = OFFSET(D,A); (2nd argument

 invalid)

IEL0869I S ARGUMENT TO T IS NOT A FILE.

ARGUMENT TO BUILTIN FUNCTION T IS
NOT A FILE. FUNCTION RETURNS
ZERO VALUE.

Example:

DCL X FLOAT,

 I FIXED;

I = COUNT(X);

IEL0870I S T USED AS ARGUMENT DOES NOT
MATCH PARAMETER DESCRIPTOR.

BUILTIN FUNCTION T USED AS
ARGUMENT DOES NOT MATCH
CORRESPONDING PARAMETER
DESCRIPTOR. RESULTS OF
EXECUTION UNDEFINED.

Example:

DCL SIN BUILTIN,

 X ENTRY(ENTRY(FIXED));

CALL X(SIN);

Explanation: In the above example, the declaration of
X is incorrect. X should be declared ENTRY(FLOAT...)
where “...” is the precision and/or the mode. This
message also applies to the declaration of a parameter
for an internal procedure.

IEL0871I I FIXED POINT ARITHMETIC USED FOR T
RESULT.

RESULT OF BUILTIN FUNCTION T WILL
BE EVALUATED USING FIXED POINT
ARITHMETIC OPERATIONS.

Explanation: This message describes a difference
between the compiler implementation and that of the
PL/I (F) Compiler. The F compiler converts the
arguments of the SUM or PROD built-in functions to
floating-point in all cases.

IEL0872I W 'ADDR' BUILTIN FUNCTION POINTS AT
STRING LENGTH FIELD.

'ADDR' BUILTIN FUNCTION RETURNS
A POINTER TO THE TWO-BYTE LENGTH
FIELD PRECEDING THE VARYING
STRING VALUE.

IEL0873I S INVALID FORMAT ITEM IGNORED.

INVALID DATA TYPE IN FORMAT ITEM.
ITEM IGNORED.

Example:

DCL F FILE;

PUT EDIT (A) (A(F));

Explanation: Fields in format items are converted to
fixed binary. Unless the field specification is arithmetic
or string, this conversion cannot take place.

Programmer Response: Change the specification of
the format item.

IEL0874I E INVALID 'SKIP' OR 'LINE' OPTION.

INVALID DATA TYPE IN 'SKIP' OR
'LINE' OPTION. VALUE ONE
ASSUMED.

Example:

DCL F FILE;

PUT SKIP(F);

Explanation: The expression in a SKIP or LINE option
must be convertible to a fixed decimal integer.

IEL0875I W ITEM NOT ARITHMETIC OR STRING.

DATA LIST ITEM NOT ARITHMETIC OR
STRING. ITEM IGNORED.

Example:

DCL NULL BUILTIN;

PUT LIST(NULL);

Explanation: Elements in a data list must be problem
data; that is, they must be arithmetic or string data.
This message is produced when the data list contains a
reference to a built-in function (such as NULL or
OFFSET) or user-defined function returning a pointer
value.

90 PL/I for MVS & VM Messages and Codes

 IEL0879I U � IEL0886I E

Programmer Response: Correct the source program
and recompile it.

IEL0879I U COMPILATION TERMINATED IN PHASE
P.

COMPILER RESTRICTION. ALL
OVERFLOW TEXT PAGES FULL.
COMPILATION TERMINATED IN PHASE
P.

Explanation: This message can be produced if there
is a high concentration of the following statements in
the program:

Inline picture conversions
Concatenation
Stream I/O
DECLARE statements for arrays, having INITIAL

attribute, for automatic, controlled, or
 based storage
Interlanguage calls
Record I/O with TOTAL option
Calls having subscripted array of structure
 as argument

Programmer Response: Reduce the concentration of
the statements listed above by putting some of them
into a DO group. The effect of this is to reorder the
statements internally without changing the running
order. Also change the storage class attribute from
AUTOMATIC, BASED, or CONTROLLED to STATIC,
for large structure declares where many fields are being
initialized with the INITIAL attribute.

IEL0881I U TOO MANY SUBSCRIPTED LABELS IN
THIS BLOCK.

COMPILER RESTRICTION. TOO MANY
SUBSCRIPTED LABELS IN THIS BLOCK.
FURTHER LABEL OPTIMIZATION
INHIBITED.

Explanation: The compiler has found too many
subscripted label variables and/or label prefixes in a
block, and further label optimization cannot be
performed.

Programmer Response: If full label optimization is
required, ensure that there are less than 400
subscripted label variables and/or label prefixes in any
block. If necessary, insert dummy BEGIN and END
statements in your program to fulfil this condition.

IEL0882I E ARGUMENT TO 'STORAGE' OR
'CURRENTSTORAGE' MAY BE INVALID.

ARGUMENT TO 'STORAGE' OR
'CURRENTSTORAGE' MAY BE INVALID.
RESULTS OF EXECUTION UNDEFINED.

Explanation: The variable specified as argument to
the STORAGE or CURRENTSTORAGE built-in function
is one of the following:

1. An unaligned and nonvarying bit string that is also
based, defined, a parameter, or contained in an
aggregate

2. A minor structure that starts or ends with an
unaligned nonvarying bit string

Explanation: Such a variable can share delimiting
bytes with adjacent bit string variables, and the byte
length returned by the built-in function will be undefined.

IEL0885I W ASSIGNMENT OF STRING HAS BEEN
OPTIMIZED. ENSURE STRINGS DO NOT
OVERLAP.

Example:

DCL C CHAR(12) INIT('ABCDEFGHIJKL');

DCL C1 CHAR (8) DEF C POS (1);

DCL C2 CHAR (8) DEF C POS (5);

CALL B(C1,C2);

B: PROC(M,N);

DCL M CHAR (8);

DCL N CHAR (8);

N = M;

 END B;

Explanation: In certain assignments, the compiler is
unable to determine whether an assignment can be
performed directly without error or whether the
assignment must be made via a compiler-generated
temporary. When this situation arises, a temporary will
always be used when the compiler option NOOPTIMIZE
is specified, but the temporary will not be generated if
the compiler option OPTIMIZE(TIME) is specified. This
message informs the user that no temporary has been
generated and that incorrect results could occur if the
two variables do in fact overlap. In the example shown,
if the assignment has been coded as:

M = N;

no error would occur if no temporary was used in the
assignment.

Note: This message can also be issued for picture
assignments.

IEL0886I E SECOND ARGUMENT TO 'SUBSTR' SET
TO ONE.

SECOND ARGUMENT OF BUILTIN
FUNCTION OR PSEUDO-VARIABLE
'SUBSTR' LESS THAN ONE. VALUE
SET TO ONE.

Example:

SUBSTRING = SUBSTR(STRING,ð,7);

Explanation: The second argument of the SUBSTR
built-in function must be greater than or equal to 1.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 91

 IEL0887I E � IEL0906I I

IEL0887I E SECOND ARGUMENT TO 'SUBSTR'
TOO LARGE.

SECOND ARGUMENT OF BUILTIN
FUNCTION OR PSEUDO-VARIABLE
'SUBSTR' GREATER THAN STRING
LENGTH. NULL STRING RETURNED.

Example:

DCL STRING CHAR(6);

SUBSTRING = (SUBSTR(STRING,7,J));

Explanation: The value of the second argument of the
SUBSTR built-in function must be less than or equal to
the length of the string in the first argument.

IEL0888I E THIRD ARGUMENT TO 'SUBSTR'
NEGATIVE.

THIRD ARGUMENT OF BUILTIN
FUNCTION OR PSEUDO-VARIABLE
'SUBSTR' NEGATIVE. NULL STRING
RETURNED.

Example:

SUBSTRING = SUBSTR(STRING,I,-1);

Explanation: The third argument of the SUBSTR
built-in function must be greater than or equal to zero.

IEL0889I E THIRD ARGUMENT TO 'SUBSTR' TOO
LARGE.

THIRD ARGUMENT TO BUILTIN
FUNCTION OR PSEUDO-VARIABLE
'SUBSTR' GREATER THAN STRING
LENGTH. RETURNED VALUE
TRUNCATED AT END OF SOURCE
STRING

Explanation: The third argument of the SUBSTR
built-in function must be less than or equal to the length
of the string in the first argument.

IEL0890I E ARGUMENTS TO 'SUBSTR' TOO
LARGE.

THE SUM OF THE SECOND AND THIRD
ARGUMENTS OF BUILTIN FUNCTION OR
PSEUDO-VARIABLE 'SUBSTR' IS
GREATER THAN THE STRING LENGTH
PLUS ONE. RETURNED VALUE
TRUNCATED AT END OF SOURCE
STRING.

Example:

DCL STRING CHAR(6)

SUBSTRING = SUBSTR (STRING,6,2);

Explanation: The value of the first argument plus the
value of the second argument, less one, must be less

than or equal to the length of the string in the first
argument.

IEL0892I W RESULT OF STRING OPERATION
TRUNCATED.

TARGET STRING SHORTER THAN
SOURCE. RESULT TRUNCATED ON
ASSIGNMENT.

Example:

DCL B1 BIT(5),

 (B2,B3) BIT(7)

B1 = B2;

Explanation: This message warns of a possible error
caused by the loss of truncated bits when the
assignment takes place. If this message is issued, the
STRINGSIZE condition will not be raised at run time,
even though it might be enabled by a condition prefix.

IEL0903I S INVALID ARGUMENT TO 'HIGH' OR
'LOW' REPLACED BY '(1)'.

INVALID ARGUMENT TO 'HIGH' OR
'LOW' BUILTIN FUNCTION. '(1)'
ASSUMED.

IEL0904I S OPERATOR(S) INVALID FOR
'COMPLEX' DATA.

OPERATOR(S) INVALID FOR
'COMPLEX' DATA. '=' ASSUMED.

Example:

DCL (A,B) COMPLEX;

IF A > B THEN GOTO...;

Explanation: Operators allowed for use with complex
data are limited to “=” and “¬=” (equals and not-equals)
operators.

IEL0905I S EXPRESSION IN 'INITIAL' FOR STATIC
VARIABLE D.

SPECIFICATION OF 'INITIAL'
ATTRIBUTE FOR STATIC VARIABLE D
CONTAINS EXPRESSION. 'INITIAL'
ATTRIBUTE IGNORED.

Example:

DCL A(3) STATIC INIT(1,2,3I);

IEL0906I I CONVERSION WILL BE DONE BY
SUBROUTINE CALL.

DATA CONVERSION WILL BE DONE BY
SUBROUTINE CALL.

Explanation: The program contains one or more
conversions that will require a PL/I library subroutine.
The message indicates where the program can be more
efficient if it is written so the conversion is performed by
compiler-generated instructions.

92 PL/I for MVS & VM Messages and Codes

 IEL0907I S � IEL0911I W

IEL0907I S WRONG NUMBER OF ARGUMENTS FOR
ENTRY D.

WRONG NUMBER OF ARGUMENTS
SPECIFIED FOR FUNCTION OR CALL D.
RESULTS OF EXECUTION UNDEFINED.

Example:

DCL P ENTRY(FLOAT,FLOAT) EXTERNAL;

 1. CALL P(A);

 2. A = P(A,A,A);

Explanation: A procedure has been referenced with a
number of arguments different from the number in the
parameter descriptor.

Programmer Response: Correct the source.

IEL0908I W 'RETURN' EXPRESSION MAY
CONFLICT WITH ENTRY
SPECIFICATION.

DATA TYPE OF RETURNED
EXPRESSION CONFLICTS WITH
'RETURNS' OPTION OF AN ENTRY
SPECIFICATION IN THIS BLOCK.
'RETURN' EXPRESSION WILL BE
IGNORED IF THE INVALID
COMBINATION OF 'RETURN' AND
ENTRY IS USED.

Example:

P: PROC RETURNS(FILE);

E: ENTRY RETURNS(DEC FLOAT);

DCL F DEC FLOAT,

 G FILE;

 RETURN(F);

 RETURN(G);

 In this example, the first RETURN statement conflicts
with the PROC statement and will be treated as a
RETURN without an expression if run during an
invocation of P. Similarly, the expression in the second
RETURN statement will be ignored if run during an
invocation of E.

IEL0909I I DATA VARIABLE USED FOR PROGRAM
CONTROL.

BASED REFERENCE TO PROGRAM
CONTROL DATA REFERS TO STORAGE
USED BY VARIABLE D BUT IS
ACCEPTED AS VALID.

Explanation: The global* optimization process must
include analysis of all possible values of label variables,
entry variables, and pointers in the program before it
can attempt to perform move-out and
strength-reduction. During the process, the second
condition in the example above would be detected.
This condition would restrict the global* optimization
process, since this process cannot detect all the

possible label constant values that might be assigned to
FLOAT.

*Global optimization is defined in the explanation for
IEL0910I.

IEL0910I W TOO MANY CALLS AND FUNCTION
REFERENCES FOR OPTIMIZATION.

COMPILER RESTRICTION. TOO MANY
'CALL ' STATEMENTS AND FUNCTION
REFERENCES. OPTIMIZATION IS
INHIBITED FOR THE PROGRAM.

Explanation: A program that is to be compiled with full
optimization (with OPT(TIME) specified) has so many
branches of control between blocks that the capacity of
the compiler to analyze them has been exceeded. The
compilation is completed without global optimization;
some local optimization might have been performed. In
this context, local optimization includes such things as
the inline simplification of calculations such as I*3 and
A**4, and the matching of data items with format items
in edit I/O. Conversely, global optimization is
concerned with common expression elimination, the
moving of invariant expressions from loops, and further
simplification of expressions. If full global optimization
is performed, any or all of the types of optimization can
be carried out, either within or between flow units
(logical divisions of the PL/I source program). If certain
compiler limitations are exceeded, global optimization is
restricted to common expression elimination alone.
Furthermore, this is performed solely within flow units.

The compiler allows up to 256 separate CALL
statements and function references involving both entry
constants and entry variables. This limit includes each
entry constant or entry variable passed as an argument
to an external procedure. A further limit of 2048 exists
for all possible assignments of entry constants to entry
variables.

Programmer Response: To obtain global optimization
it is necessary to simplify the program's structure so
that the number of branches between begin-blocks and
between internal procedures is kept within the limits
described above.

IEL0911I W TOO MANY LOCATOR LABEL OR
ENTRY ASSIGNMENTS FOR
OPTIMIZATION.

COMPILER RESTRICTION. TOO MANY
LOCATOR LABEL OR ENTRY VARIABLE
ASSIGNMENTS. OPTIMIZATION IS
INHIBITED FOR THE PROGRAM.

Explanation: A program that is to be compiled with
global* optimization (with OPT(TIME) specified) has so
many locator and entry variable assignments that the
capacity of the compiler to analyze them has been
exceeded. The compilation is completed without global
optimization.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 93

 IEL0912I W � IEL0916I W

The compiler allows up to 1360 locator, label, or entry
variable assignments without inhibiting optimization.

* Local and global optimization are defined in the
explanation for IEL0910I.

Programmer Response: To obtain global optimization
it is necessary to reduce the number of locator and
entry variable assignments that appear in the source
program.

IEL0912I W TOO MANY BASED LOCATOR LABEL
OR ENTRY ASSIGNMENTS FOR
OPTIMIZATION.

COMPILER RESTRICTION. TOO MANY
ASSIGNMENTS WITH BASED
LOCATORS LABEL OR ENTRY
VARIABLES. OPTIMIZATION IS
INHIBITED FOR THE PROGRAM.

Explanation: A program that is to be compiled with
global* optimization (with OPT(TIME) specified) has so
many based locator, based label, and based entry
variable assignments that the capacity of the compiler
to analyze them has been exceeded. The compilation
is completed without global optimization.

The compiler allows up to 680 based locator, label or
entry variable assignments without inhibiting
optimization.

* Local and global optimization are defined in the
explanation for IEL0910I.

Programmer Response: To obtain global optimization
it is necessary to reduce the number of based locator,
based label, and based variable assignments that
appear in the source program.

IEL0913I W TOO MANY LOCATOR TEMPORARIES
ACTIVE FOR OPTIMIZATION.

COMPILER RESTRICTION. TOO MANY
LOCATOR TEMPORARIES ACTIVE.
OPTIMIZATION IS INHIBITED FOR THE
PROGRAM.

Explanation: The compiler creates a “locator
temporary” for functions that return locator values. A
program that is to be compiled with global* optimization
(with OPT(TIME) specified) has so many of these
locator temporaries created that the capacity of the
compiler to analyze them has been exceeded. The
compilation is completed without global optimization.

The compiler allows up to 10 locator temporaries
without inhibiting optimization.

* Local and global optimization are defined in the
explanation for IEL0910I.

Programmer Response: To obtain global optimization
it is necessary to reduce the number of locator values

returned by functions that appear in the source
program.

IEL0914I W STATEMENT MAY NEVER BE
EXECUTED.

Example:

P: PROC;

DCL X, Y CHAR(1);

IF X = '2' THEN Y = '';

ELSE GOTO L2;

GOTO L2;

L1: A = 5;

L2: B = 6;

END P;

In this example, the message will be produced for the
statement labeled L1, since there is no possibility of
control being transferred to it.

The statement “GOTO L2;” in this example can be run.
However, the optimization process has modified the
THEN clause to branch directly to the label constant L2
rather than to the statement following the ELSE clause.
The message is then produced and the redundant
statement is eliminated.

Explanation: This message warns that the compiler
has detected a statement that can never be run as the
flow of control must always pass by it.

IEL0915I W TOO MANY STATEMENT LABEL
CONSTANTS FOR OPTIMIZATION.

COMPILER RESTRICTION. TOO MANY
STATEMENT LABEL CONSTANTS.
OPTIMIZATION IS INHIBITED FOR THE
PROGRAM.

Explanation: A program that is to be compiled with
global* optimization (with OPT(TIME) specified) has so
many statement label constants that the capacity of the
compiler to analyze them has been exceeded. The
compilation is completed without global optimization.

The compiler allows up to 2048 statement label
constants without inhibiting optimization.

* Local and global optimization are defined in the
explanation for IEL0910I.

Programmer Response: To obtain global optimization
it is necessary to reduce the number of statement label
constants used in the source program.

IEL0916I W ITEM(S) D MAY BE UNINITIALIZED.

ITEM(S) D MAY BE UNINITIALIZED
WHEN USED IN THIS BLOCK.

Example:

P: PROC;

 DCL X;

Z = X;

 END P;

94 PL/I for MVS & VM Messages and Codes

 IEL0917I W � IEL0920I W

Explanation: This message refers only to variables
declared within the block. The flow-analysis stage of
optimization checks all possible flow-paths through a
program although many of the possible flow-paths might
never be used. In doing so, the flow analysis
determines flow-paths originating from statements
prefixed by label constants that can be branched to
from on-units, as well as those that originate from
PROCEDURE and ENTRY statements.

It is possible, therefore, that this message is produced
for items that are initialized correctly for the flow-paths
that will actually be used owing to the presence of other
flow-paths that will never be used. This is aggravated
by the necessity to consider label constants as external
entry points. In the following example, an ON-unit
returns control to a block by means of a GOTO
statement. The variable X is detected as uninitialized if
the block is entered through the label constant Y,
although it might have been initialized before the
ON-unit was entered.

Example:

P: PROC;

X = 1ðð;

ON OFL GOTO Y;
...

Y: A = X;
...

The final value assigned to a static variable in one
invocation of a procedure will be the 'initial' value of
that variable in a subsequent invocation of that
procedure.

IEL0917I W N FLOW UNITS IN BLOCK. GLOBAL
OPTIMIZATION RESTRICTED.

BLOCK CONTAINS N FLOW UNITS.
GLOBAL OPTIMIZATION PERFORMED
ONLY IN DO GROUPS.

Explanation: The block has been split into flow units
for the purposes of global* optimization. However, the
compiler limit of 255 flow units in a block has been
exceeded, and consequently, global optimization is
restricted. Before scanning to the next block, the
compiler looks for DO-groups in the current block, in the
hope that flow analysis (and full global optimization) can
be completed for these.

* Local and global optimization are defined in the
explanation for IEL0910I.

Programmer Response: If full optimization is required
for the block, either simplify the flow of control within the
block, or divide the block into two or more simpler
blocks.

IEL0918I W GO TO D MAY PASS CONTROL OUT OF
BLOCK.

GO TO D MAY CAUSE CONTROL TO BE
PASSED OUT OF THE CURRENT
BLOCK.

Explanation: D is a label variable declared STATIC
and INITIAL. Since the initialization is done at compile
time, no environment information can be supplied to the
label variable; since it has been detected that control
might be passed out of the current block, the GOTO is
run by the library. This will cause a run-time error. If
this message appears, message IEL0580I (severity E)
will have been produced for the specified label variable.

Programmer Response: Redeclare the LABEL
variable as AUTOMATIC.

IEL0919I W N VARIABLES IN PROGRAM. GLOBAL
OPTIMIZATION RESTRICTED.

N VARIABLES IN PROGRAM. GLOBAL
OPTIMIZATION PERFORMED FOR 255
VARIABLES. LOCAL OPTIMIZATION
PERFORMED ON REMAINDER.

Explanation: The compiler will consider 255 variables
in the program for global* optimization. The remainder
are considered solely for local* optimization.

Explicitly declared variables will be considered for global
optimization in preference to contextually declared
variables, and the latter will in turn be considered in
preference to implicitly declared variables. Furthermore,
the highest preference will be given to those variables
declared in the final DECLARE statements in the
outermost block.

If the program contains more than 255 variables, most
benefit will be obtained from the global optimization of
arithmetic variables, particularly DO loop control
variables and subscripting variables. Little or no benefit
will be gained from the optimization of string variables
or program control data.

Arithmetic variables should not, therefore, be implicitly
declared but should be declared in the final DECLARE
statements in the outermost block. Further benefits can
be obtained if declared but unreferenced variables are
eliminated from the program.

* Local and global optimization are defined in the
explanation for IEL0910I.

IEL0920I W N FLOW UNITS IN DO GROUP.
GLOBAL OPTIMIZATION RESTRICTED.

DO GROUP CONTAINS N FLOW UNITS.
GLOBAL OPTIMIZATION IS
RESTRICTED.

Explanation: The compiler limit of 255 flow units in a
DO-group has been exceeded and full global*

 Chapter 1. Compile-Time and Macro Preprocessor Messages 95

 IEL0921I E � IEL0927I S

optimization is inhibited within the group. Partial global
optimization will be performed for flow units within the
group.

* Local and global optimization are defined in the
explanation for IEL0910I.

IEL0921I E LESS THAN N CHARACTERS OF T IN D
PRINTED.

QUALIFIED NAME OF ELEMENT T OF
STRUCTURE D WILL BE TRUNCATED
TO LESS THAN N CHARACTERS IN
DATA DIRECTED I/O.

Example:

PUT DATA (PAYROLL);

 where PAYROLL is declared as a base element of a
structure which when fully qualified exceeds 255
characters, including periods.

IEL0923I E D INVALID TYPE IN DATA LIST FOR
DATA DIRECTED I/O OR CHECK.

COMPILER RESTRICTION. TYPE OF
'BASED' VARIABLE D IN DATA LIST
NOT SUPPORTED FOR DATA DIRECTED
I/O OR CHECK. ITEM IGNORED.

Example:

DCL 1 STR BASED(P),

2 LEN FIXED BIN,

2 TITLE CHAR(N REFER(LEN));

PUT DATA(TITLE);

Explanation: The compiler does not allow PUT DATA
and GET DATA statements or the CHECK prefix option
on certain types of based variables. This based
variable in the DATA list or CHECK list will be ignored.
The syntax of the CHECK condition is still analyzed at
compile time; however, the CHECK condition is no
longer supported and is always disabled at run time.
See message IEL0756I for additional CHECK condition
details. See the PL/I for MVS & VM Language
Reference for information about data-directed I/O.

IEL0924I E D INVALID TYPE IN DATA LIST FOR
DATA DIRECTED I/O OR CHECK.

COMPILER RESTRICTION. TYPE OF
'DEFINED' VARIABLE D IN DATA LIST
NOT SUPPORTED FOR DATA DIRECTED
I/O OR CHECK. ITEM IGNORED.

Example:

DCL A CHAR(1ðð),

B CHAR(1ð) DEF A POS(N);

PUT DATA(B);

DCL E CTL,

F DEF E;

PUT DATA(F);

Explanation: The compiler does not allow the
transmission of the following types of defined variables
by means of the PUT DATA statement or the CHECK
prefix option:

1. A string-overlay defined item
2. An iSUB-defined item
3. An item defined on a controlled base variable

This defined variable in the DATA list or CHECK list will
be ignored.

IEL0925I W GLOBAL OPTIMIZATION RESTRICTED.

FLOW WITHIN BLOCK OR DO GROUP IS
TOO COMPLEX. GLOBAL
OPTIMIZATION IS RESTRICTED.

Explanation: The block or DO-group has been split
into flow units for the purposes of flow analysis and
global* optimization. However, the compiler limit of
1024 connections between flow units has been
exceeded, and consequently, global optimization has
been restricted within the block or group. Partial global
optimization will be performed for flow units within the
block or group.

* Local and global optimization are defined in the
explanation for IEL0910I.

IEL0926I S 'SIZE' RAISED WHEN CONVERTING
CONSTANT [TO D].

'SIZE' CONDITION RAISED WHEN
CONVERTING CONSTANT [TO D].
RESULT OF CONVERSION UNDEFINED.

Example:

DCL A FIXED DECIMAL(2,ð);

A = 999;

Explanation: A constant converted at compile-time
has raised the SIZE condition.

IEL0927I S 'CONVERSION' RAISED WHEN
CONVERTING CONSTANT [TO D].

'CONVERSION' CONDITION RAISED
WHEN CONVERTING CONSTANT [TO D].
RESULT OF CONVERSION UNDEFINED.

Example:

READ FILE(BERT) IGNORE('JACK AND JIM');

Explanation: The IGNORE option should refer to an
arithmetic integer value.

96 PL/I for MVS & VM Messages and Codes

 IEL0928I U � IEL0932I S

IEL0928I U STATIC STORAGE EXCEEDS 16777216
BYTES.

THE SIZE OF STATIC STORAGE
REQUIRED FOR THIS PROGRAM
EXCEEDS 16777216 BYTES.

Explanation: STATIC storage is limited to 1677216
bytes because STATIC is kept in a CSECT. The
maximum size of a CSECT is 1677216 bytes.

This message can be issued when the TEST
compile-time option is specified with the (SYM)
suboption, since symbol tables for INTERNAL variables
and program control constants are built in internal
STATIC storage.

Programmer Response: Check the declarations for
STATIC arrays and structures, and reduce the size of
the extents that have been specified.

If you got this message while using TEST(SYM), you
can reduce symbol table space by eliminating
unreferenced INTERNAL variables from the program.
You can also distribute the variables used by the
external procedure among two or more external
procedures to this problem.

IEL0929I U AUTOMATIC STORAGE EXCEEDS
16777216 BYTES.

THE SIZE OF AUTOMATIC STORAGE
REQUIRED FOR THIS BLOCK EXCEEDS
16777216 BYTES.

Explanation: The size of the initial stack
(AUTOMATIC) storage for a block is limited to
16777216 bytes. Stack extensions are also each
constrained to 16777216 bytes. This means the size of
an AUTOMATIC aggregate, temporary variable or
dummy argument may not exceed 16M. Violation of
this constraint may result in unpredictable results.

Note that the initial stack storage for a block includes
some overhead for internal housekeeping storage.
Thus, the maximum stack storage size of 16777216 is
not all available for user AUTOMATIC variables.

Programmer Response: Check the declaration for
AUTOMATIC arrays and structures in the identified
block, and reduce the size of extents that have been
specified. Alternatively, change the storage class of the
array or structure to BASED or CONTROLLED.

IEL0930I E COMPILER RESTRICTION. PART OF
STATIC STORAGE EXCEEDS 64K
BYTES.

Explanation: Static storage is divided into a series of
regions. Each region contains different categories of
either constants or variables. If one of the regions
containing constants, for example the region containing
symbol tables, exceeds 65535 bytes in size, then it

might be impossible for the compiler to address some of
the constants.

This message can be issued when the TEST
compile-time option with the suboption (SYM) is
specified, since additional internal STATIC storage
might be required to build DEDs and locators or
locator/descriptors for variables.

Programmer Response: If the program contains
numerous variables and also contains a GET DATA or
PUT DATA statement without any qualifying list, remove
the statement or replace it by statement containing a
data list.

Alternatively split the external procedure into two or
more external procedures.

If you received this message while using the TEST
compile-time option, you can reduce static storage
space by eliminating unreferenced INTERNAL variables
from the program. You can also distribute the variables
used by the external procedure among two or more
external procedures to eliminate this problem.

IEL0931I E LENGTH OF D EXCEEDS LENGTH OF
'DEFINED' BASE.

LENGTH OF VARIABLE D EXCEEDS
LENGTH OF VARIABLE ON WHICH IT IS
DEFINED. THIS DEFINING HAS BEEN
ACCEPTED.

Example:

DCL A CHAR(6);

DCL B CHAR(1ð) DEF A;

Explanation: The compiler will accept this invalid form
of defining to allow running of programs that require it.
However, it is possible that an assignment to the
defined item will cause storage to be overwritten and an
unpredictable error to occur.

Programmer Response: If this defining is required,
check that any conditional link-editing and run steps will
not be inhibited.

IEL0932I S AGGREGATE DESCRIPTOR FOR
STRUCTURE TOO LARGE.

COMPILE RESTRICTION. AGGREGATE
DESCRIPTOR FOR STRUCTURE TOO
LARGE. RESULTS OF EXECUTION
UNDEFINED.

Explanation: An aggregate descriptor is a control
block created by the compiler to handle the addressing
of the base elements in an aggregate. Its format is
described in the PL/I for MVS & VM Diagnosis Guide.
A large number of base elements in a large aggregate
has caused the aggregate descriptor to exceed the limit
of its internal addressability.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 97

 IEL0933I W � IEL0940I W

IEL0933I W D INVALID TYPE FOR DATA DIRECTED
I/O OR CHECK.

COMPILER RESTRICTION. TYPE OF
'BASED' VARIABLE D NOT
SUPPORTED FOR DATA DIRECTED I/O
OR CHECK. ITEM IGNORED.

Example:

DCL 1 STR BASED(P),

2 LEN FIXED BIN,

2 TITLE CHAR(N REFER(LEN));

PUT DATA;

Explanation: The compiler does not allow PUT DATA
and GET DATA statements or the CHECK prefix option
on certain types of based variables. See the PL/I for
MVS & VM Language Reference for details.

IEL0934I W D INVALID TYPE FOR DATA DIRECTED
I/O OR CHECK.

COMPILER RESTRICTION. TYPE OF
'DEFINED' VARIABLE D NOT
SUPPORTED FOR DATA DIRECTED I/O
OR CHECK. ITEM IGNORED.

Example:

DCL A CHAR(1ðð), B CHAR(1ð)

DEF A POS(N);

DCL C(1ðð,1ðð)CHAR(1);

DCL D(1ð,1ð) CHAR(1)

 DEF C(1SUB,2SUB);

DCL E CTL,F DEF E;

PUT DATA;

Explanation: The compiler does not allow the
transmission of the following types of defined variables
by means of the PUT DATA statement or the CHECK
prefix option:

1. A string-overlay defined item
2. An iSUB-defined item
3. An item defined on a controlled base variable

IEL0935I U THE SIZE REQUIRED FOR ADDRESSING
CONSTANTS IN STATIC STORAGE FOR
THIS PROGRAM EXCEEDS 4095 BYTES.
COMPILATION TERMINATED.

Explanation: The compiler cannot generate correct
addressing code if the addressing constants at the start
of static storage occupy more than 4095 bytes. The
addressing constants in question consist of three for
each procedure, ON-unit, and begin-block, and one for
each additional entry point, plus address constants for
library routines, branching within the object program,
and address constants to address the remainder of
static storage beyond 4K.

This message can also be issued when the TEST
compile-time option is specified, because debugging
hooks and the symbol table locator/descriptor
initialization code increases the size of the program
CSECT. This in turn may increase the number of
addressing constants for branching within the program.

Programmer Response: Split the external procedure
into two or more external procedures, or change some
large static variables to CONTROLLED or AUTOMATIC.

If you received this message while using the TEST
compile-time option, you can reduce the program
CSECT size by specifying a TEST suboption that
causes fewer debugging hooks to be generated. You
can also split the external procedure into two or more
external procedures to eliminate this problem.

IEL0936I S MULTITASKING FEATURE IS NOT
SUPPORTED.

MULTITASKING FEATURE IS NOT
SUPPORTED. RESULTS OF EXECUTION
UNDEFINED.

Example:

CALL X TASK(T);

Explanation: The tasking feature is not supported in
this release. The compiler provides limited diagnosis
and issues this message (only) when:

� A CALL statement with the EVENT, PRIORITY or
TASK option is detected.

� The PRIORITY built-in or pseudovariable is used.
This includes implicit PRIORITY usage via TASK
assignment.

The compiler provides no diagnostic for tasking
programs that use task declaration, comparison or
procedure options(task).

IEL0940I W T MAY INCREASE EXECUTION TIME.

T CONFLICTS WITH THE OPTIMIZE
OPTION. EXECUTION TIME MAY BE
INCREASED.

Explanation: The INTERRUPT option and the
STRINGRANGE, SUBSCRIPTRANGE, SIZE and
STRINGSIZE conditions are program debugging aids
causing many extra machine instructions to be
generated and executed. Their use is inconsistent with
the use of the OPT(TIME) option, which specifies that
the compiler is to optimize the generated machine
instructions in order that a very efficient program can be
produced.

Programmer Response: Remove the INTERRUPT
option and/or disable the conditions if the full benefit of
optimization is to be obtained.

98 PL/I for MVS & VM Messages and Codes

 IEL0950I W � IEL0958I E

IEL0950I W 'PLIXOPT' STRING IS INVALID. SEE
RELATED RUNTIME MESSAGE T.

'PLIXOPT' STRING IS INVALID. SEE
RELATED RUNTIME MESSAGE T.

Explanation: The PLIXOPT INITIAL string could not
be parsed.

Programmer Response: Refer to the Language
Environment Debugging Guide and Run-Time
Messages for an explanation of the equivalent run-time
message. Correct the PLIXOPT INITIAL string.

IEL0951I W T IN 'PLIXOPT' STRING IS INVALID.
SEE RELATED RUNTIME MESSAGE T.

T IN 'PLIXOPT' STRING IS INVALID.
SEE RELATED RUNTIME MESSAGE T.

Explanation: The PLIXOPT INITIAL string contains an
item which is not recognized as a valid run-time option.

Programmer Response: Refer to the Language
Environment Debugging Guide and Run-Time
Messages for an explanation of the equivalent run-time
message. Correct the invalid run-time option.

IEL0952I I T IN 'PLIXOPT' STRING IS NOT
SUPPORTED. SEE RELATED RUNTIME
MESSAGE T.

T IN 'PLIXOPT' STRING IS NOT
SUPPORTED. SEE RELATED RUNTIME
MESSAGE T.

Explanation: The PLIXOPT INITIAL string contains a
run-time option which is not supported by Language
Environment for MVS & VM.

Programmer Response: Refer to the Language
Environment Debugging Guide and Run-Time
Messages for an explanation of the equivalent run-time
message. Correct the unsupported run-time option.

IEL0953I I 'SPIE' OR 'STAE' IN 'PLIXOPT'
STRING IS NOT SUPPORTED. SEE
RELATED RUNTIME MESSAGE T.

'SPIE' OR 'STAE' IN 'PLIXOPT'
STRING IS NOT SUPPORTED. SEE
RELATED RUNTIME MESSAGE T.

Explanation: The SPIE and STAE options have been
replaced by the TRAP option. TRAP(ON) is equivalent
to SPIE and STAE; TRAP(OFF) is equivalent to
NOSPIE and NOSTAE. The combination SPIE and
NOSTAE and the combination NOSPIE and STAE are
no longer supported.

Programmer Response: Refer to the Language
Environment Debugging Guide and Run-Time
Messages for an explanation of the equivalent run-time
message. Replace SPIE and STAE with the TRAP
option.

IEL0954I W 'PLIXHD' NOT DECLARED AS SCALAR
'CHARACTER' AND 'VARYING'.

'PLIXHD' NOT DECLARED AS SCALAR
'CHARACTER' AND 'VARYING'.
RESULTS OF EXECUTION UNDEFINED.

Explanation: A level 1 static external variable called
PLIXHD is not declared as scalar and CHARACTER
VARYING, rendering it unsuitable for user-identification
of REPORT and COUNT output. Such a declaration
will give rise to unpredictable results at run time if either
REPORT or COUNT output is required.

IEL0955I E 'PLIXOPT' NOT DECLARED AS SCALAR
'CHARACTER' AND 'INITIAL'.

'PLIXOPT' NOT DECLARED AS
SCALAR 'CHARACTER' AND 'INITIAL'.
RESULTS OF EXECUTION UNDEFINED.

Explanation: A level 1 static external variable called
PLIXOPT is not declared as scalar and CHARACTER
INITIAL, rendering it unsuitable for run-time options.
Such a declaration will give rise to unpredictable results
on program initialization at run time.

IEL0956I W 'PLIXOPT' NOT DECLARED
'VARYING'.

'PLIXOPT' NOT DECLARED 'VARYING'
BUT ACCEPTED.

Explanation: The VARYING attribute is omitted from
an otherwise suitable declaration of a variable called
PLIXOPT for run-time options. However, the variable is
accepted for compile-time analysis of the associated
initial string.

IEL0957I E 'PLIXOPT' 'INITIAL' STRING HAS
LENGTH OUTSIDE PERMITTED RANGE.

'PLIXOPT' 'INITIAL' STRING HAS
LENGTH OUTSIDE PERMITTED RANGE.
NO EXECUTION OPTIONS PROCESSED.

Explanation: The length of PLIXOPT initial string is
outside the allowed range 0< length ‰250. No
compile-time analysis of PLIXOPT takes place and
message IBM016I—PLIXOPT not a valid execution-time
options string—will result on program initialization at run
time.

IEL0958I E NO VALID OPTIONS IN 'PLIXOPT'
'INITIAL' STRING.

NO VALID OPTIONS IN 'PLIXOPT'
'INITIAL' STRING. NO EXECUTION
OPTIONS PROCESSED.

Explanation: No valid options have been found during
compile-time analysis of PLIXOPT initial string.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 99

 IEL0959I E � IEL0969I E

MESSAGE IBM016I—PLIXOPT not a valid
execution-time options string—will result in program
initialization at run time.

IEL0959I E ONE OR MORE INVALID OPTIONS IN
'PLIXOPT' 'INITIAL' STRING.

ONE OR MORE INVALID OPTIONS IN
'PLIXOPT' 'INITIAL' STRING. ONLY
VALID EXECUTION OPTIONS
PROCESSED.

Explanation: One or more invalid options have been
found and ignored during compile-time analysis of
PLIXOPT initial string. MESSAGE IBM017I—Erroneous
option in PLIXOPT has been ignored—will result in
program initialization at run time.

IEL0960I W GENERATED EXTERNAL NAMES MAY
BE AMBIGUOUS.

COMPILER GENERATED EXTERNAL
NAMES MAY BE AMBIGUOUS IF THE
PROGRAM IS LINK-EDITED WITH A
PROCEDURE OF SIMILAR NAME.

Explanation: The compiler will generate names for
internal controlled variables and internal files, if used.
These names are processed by the linkage editor. If
two external PL/I procedures with similar names, such
as ATESTER and BTESTER are to be link-edited
together, it is possible for both procedures to have the
name /TESTER1 generated for them. However, this
cannot occur unless both procedures have at least 36
generated names each.

IEL0961I S STATEMENT TOO LARGE.

COMPILER RESTRICTION. STATEMENT
TOO LARGE. RESULTS OF EXECUTION
UNDEFINED.

Explanation: The size of the statement can force the
compiler to generate a set of instructions that exceeds
4096 bytes of storage. The use of an RX branch
instruction does not allow an offset that exceeds 4096.
Consequently running of the statement can produce
unpredictable errors.

Programmer Response: Divide the statement into two
or more smaller statements.

IEL0964I E EXTERNAL NAME D MAY CAUSE
ERROR IN EXECUTION.

Explanation: The compiler has detected two or more
CSECTs with the same link-edit name for this
compilation. The linkage editor resolves all references
to this name using the first encountered CSECT with
this name. Running yields unpredictable results.
(Currently, this message is issued only if the link-edit
name is SYSPINT.)

IEL0966I W EXTERNAL NAME D EXCEEDS N
CHARACTERS. IT IS SHORTENED TO T.

COMPILER RESTRICTION. EXTERNAL
NAME D EXCEEDS N CHARACTERS. IT
IS SHORTENED TO T.

Example:

DCL ABCDEFGHI FILE...;

Explanation: Since external identifiers in PL/I are
resolved by the linkage editor, it follows that such
names should not exceed the limit imposed by the
linkage editor on the length of names. The method of
truncation used by the compiler will, in many cases,
create unique identifiers so that the compilation can
continue, and link-editing and running can be
successful.

IEL0967I W D EXCEEDS N CHARACTERS. IT IS
TRUNCATED TO T.

COMPILER RESTRICTION. EXTERNAL
ENTRY NAME D WITH INTERLANGUAGE
OPTION EXCEEDS N CHARACTERS. IT
IS TRUNCATED TO T.

Explanation: In PL/I the usual method of truncating
external names is to concatenate the first four and last
three characters to form a seven-character identifier.
External names for COBOL, FORTRAN, and
ASSEMBLER routines can be up to eight characters in
length, and any truncation of names of greater length
than this involves the removal of the excess characters.
To allow interlanguage communication, PL/I adopts this
technique for identifiers that are associated with
COBOL, FORTRAN, or ASSEMBLER routines.

IEL0968I U OVERFLOW CONDITION RAISED WHEN
CONVERTING CONSTANT.

OVERFLOW CONDITION RAISED WHEN
CONVERTING CONSTANT WHICH IS
OUTSIDE ALLOWED RANGE.

Explanation: Floating-point constant is outside the
range and cannot be converted to its true value.
(Absolute value exceeds 7.23700E75.)

Programmer Response: Verify that constant is in
correct range. See the PL/I for MVS & VM Language
Reference for information on floating-point numbers.

IEL0969I E NO LABEL ON 'FORMAT' STATEMENT.

'FORMAT' STATEMENT HAS NO
LABEL. STATEMENT IGNORED.

Example:

F: ;

FORMAT(A);

100 PL/I for MVS & VM Messages and Codes

 IEL0970I U � IEL0991I U

IEL0970I U COMPILER CANNOT PROCEED. ERROR
N DURING PHASE P. CORRECT
SOURCE AND RECOMPILE.

COMPILER ERROR NUMBER N DURING
PHASE P. COMPILER UNABLE TO
PROCEED. CORRECTION OF SOURCE
ERRORS MAY LEAD TO SUCCESSFUL
COMPILATION.

Explanation: Errors have prevented successful
compilation. A detailed explanation of error number N
is given “Error and Restriction Numbers (0 to 946) for
IEL0001I, IEL0230I, and IEL0970I” on page 105 in this
chapter.

Programmer Response: Correct the errors indicated
by other messages and recompile the program.

IEL0971I W FIRST USE OF OPTION T FOR FILE D
IGNORED.

ENVIRONMENT OPTION T SPECIFIED
MORE THAN ONCE IN DECLARATION
OF FILE D. FIRST USE IGNORED.

Example:

DCL A FILE ENV (RECSIZE(2ð)RECIZE(2ð));

IEL0983I W EXTERNAL NAME D EXCEEDS N
CHARACTERS.

EXTERNAL NAME D EXCEEDS N
CHARACTERS. EXECUTION IS
UNDEFINED IF D IS THE SAME AS A
COMPILER GENERATED NAME.

Explanation: An 8-character external entry name has
been specified. It has been accepted without
truncation. However, if the name used is the same as a
name that is generated by the compiler during this
compilation, unexpected results can occur.

IEL0985I W EXTERNAL ENVIRONMENT NAME T
TRUNCATED TO FIRST 8 CHARACTERS.

EXTERNAL ENVIRONMENT NAME T1 IS
TOO LONG. NAME TRUNCATED TO T2
USING FIRST 8 CHARACTERS.

Example:

DCL X ENTRY EXT('A12345678') OPTIONS(ASSEMBLER);

Explanation: The external environment name has a
maximum allowed length of 8 characters. The compiler
truncates the name by using the first 8 characters. The
user should ensure that the truncated name is not the
same as a name that is generated by the compiler
during the compilation. If this occurs, unexpected
results can occur. Names generated by the compiler
can be examined by specifying the ESD compiler
option.

IEL0989I I RECORD I/O FUNCTION PERFORMED
BY SUBROUTINE CALL.

'TOTAL' OPTION SPECIFIED BUT
RECORD I/O FUNCTION PERFORMED
BY SUBROUTINE CALL.

Example:

DCL X RECORD ENV(FB,RECSIZE(N),TOTAL),

 Y CHAR(8ð),

N FIXED BINARY(31,ð) STATIC;

READ FILE(X) INTO(Y);

Explanation: A record I/O statement is performed
in-line only if the TOTAL option is specified and all the
environment options are known at the time of
compilation. In the example shown, the record size of
file X was declared as “N”, and was thus not known at
the time of compilation. Therefore, although the TOTAL
option was specified, the READ statement must be
performed by a library call. The message can also be
produced if the record size and the length of the record
variable differ.

Programmer Response: Examine the statement
giving rise to the message, and check the file and the
variable used in the statement, to determine whether
information supplied at run time could have been made
known at compilation time.

IEL0990I E 'PASSWORD' ENVIRONMENT OPTION
SPECIFIED WITHOUT 'VSAM'.

'PASSWORD' ENVIRONMENT OPTION
SPECIFIED WITHOUT 'VSAM'.
ENVIRONMENT OPTION IN FILE D.
'VSAM' ASSUMED.

Explanation: A password can be declared only for a
VSAM file.

IEL0991I U PROGRAM TOO LARGE. COMPILATION
TERMINATED IN PHASE P.

COMPILER RESTRICTION. PROGRAM
TOO LARGE. COMPILATION
TERMINATED IN PHASE P.

Explanation: The program contains many source
variables or procedure invocations which require
aggregate temporaries, or many internal procedure or
begin-blocks. Information about these is held in the
compiler directory whose capacity has been exceeded.
The problem is more likely to occur when OPT(TIME)
compiler option is used since extra demands are placed
on dictionary space. Compilation is terminated as the
compiler dictionary has been filled up (and no further
information can be held in it).

Programmer Response: Divide the program into two
or more parts and compile these separately. Increasing
the storage will not correct the problem since the

 Chapter 1. Compile-Time and Macro Preprocessor Messages 101

 IEL0995I U � IEL0995I U

number of pages in the dictionary is fixed, and
increasing the storage only increases the page size.

IEL0995I U COMPILER IS UNABLE TO ACCESS
RUNTIME ROUTINE T.

COMPILER IS UNABLE TO ACCESS
RUNTIME LIBRARY ROUTINE T.
COMPILATION TERMINATED.

Explanation: The Language Environment run-time
library is required for compilation of PL/I programs. The
compiler utilizes the Language Environment run-time
data conversion routines to perform compile-time
conversions. In addition, run-time options specified in
PLIXOPT declarations are interpreted using the
Language Environment run-time options parsing
routines. If these Language Environment run-time
routines are not accessible to the compiler, the
compilation is terminated with the message shown
above.

Programmer Response: For compilations on MVS,
provide access to the Language Environment
SCEERUN run-time library or its equivalent. For
compilations on VM, provide access to the Language
Environment run-time library routines CEECOPP and
IBMRCOMP as nucleus extensions, saved segments or
MODULEs on a currently accessed disk.

 Messages IEL2233-IEL2274

IEL2233I E SEMICOLON MISSING. T TO NEXT
SEMICOLON IGNORED.

SEMICOLON MISSING IN '%NOTE'
STATEMENT. TEXT IGNORED FROM T
TO NEXT SEMICOLON.

Example:

%NOTE (A);

B = 5;

IEL2234I E SEVERITY N INVALID. T ASSUMED.

INVALID SEVERITY CODE N IN '%NOTE'
STATEMENT. T ASSUMED.

Example:

%NOTE ('XYZ:ssq.,5);

Explanation: The severity code in a %NOTE
statement must be 0, 4, 8, 12, or 16.

IEL2235I E MESSAGE TEXT TRUNCATED TO N
CHARACTERS.

MESSAGE TEXT IN '%NOTE'
STATEMENT TOO LONG. TRUNCATED
TO FIRST N CHARACTERS.

Explanation: The message text in a %NOTE
statement must not exceed 256 characters in length.

IEL2236I E ARGUMENTS TO T IGNORED.

ARGUMENTS SPECIFIED FOR BUILTIN
FUNCTION T. ARGUMENTS IGNORED.

Example:

%L = COUNTER(A);

IEL2237I E 'COUNTER' EXCEEDS '99999'. RESET.

VALUE OF 'COUNTER' EXCEEDS
'99999'. VALUE RESET TO '00000'.

Explanation: The COUNTER built-in function cannot
be invoked more than 99999 times.

IEL2238I E LEFT PARENTHESIS ASSUMED.

MISSING LEFT PARENTHESIS ASSUMED
IN '%NOTE' STATEMENT.

IEL2239I W LISTING CONTROL STATEMENT SPANS
LINES.

PREPROCESSOR RESTRICTION.
LISTING CONTROL STATEMENT SPANS
LINES. STATEMENT NOT
IMPLEMENTED.

Explanation: A listing control statement is not
implemented by the preprocessor if it spans lines.

IEL2240I E FIRST SETTING OF PARAMETER T
ASSUMED.

PARAMETER T MAY NOT BE SET MORE
THAN ONCE. FIRST SETTING
ASSUMED.

Example:

%P: PROC(A,B) STMT RETURNS(CHAR);

 –

 –

%END P;

%ACT P;

P(X,6) A(Z);

Explanation: In a statement-form procedure
invocation, an attempt has been made to set the same
parameter more than once, either by a positional
argument and a keyword argument, or by more than
one keyword argument.

102 PL/I for MVS & VM Messages and Codes

 IEL2241I E � IEL2248I E

IEL2241I E SPECIFICATION T IGNORED.

INVALID SPECIFICATION IN
'%PROCEDURE' STATEMENT. T
IGNORED.

Explanation: Only the attributes RETURNS and
STATEMENT can appear on the %PROCEDURE
statement.

IEL2242I E INVALID KEYWORD T AND ANY
ARGUMENT IGNORED.

INVALID KEYWORD IN
STATEMENT-FORM PROCEDURE
INVOCATION. T AND ANY ARGUMENT
IGNORED.

Example:

%P: PROC(A,B,C) RETURNS(FIXED) STMT;

 –

 –

%END P;

%ACT P;

P C(X) A D(Z);

Explanation: A keyword has been specified in a
statement-form procedure invocation that is not the
name of any of the parameters of the procedure.

IEL2243I E COMMA REPLACED BY BLANK.

INVALID COMMA IN STATEMENT-FORM
PROCEDURE INVOCATION REPLACED
BY BLANK.

Example:

%P: PROC(D,E,F) RETURNS(CHAR) STMT;

 –

 –

%END P;

%DCL P ENTRY;

P E(XYZ), F(ABC);

IEL2244I E 'PARMSET' INVOKED IN
NON-PREPROCESSOR TEXT.

'PARMSET' BUILTIN FUNCTION
INVOKED IN NON-PREPROCESSOR
TEXT. NULL STRING RETURNED.

Example:

%DCL A CHAR, PARMSET BUILTIN;

C = PARMSET(A);

IEL2245I E 'PARMSET' INVOKED OUTSIDE A
PROCEDURE.

'PARMSET' BUILTIN FUNCTION
INVOKED OUTSIDE A PREPROCESSOR
PROCEDURE. BIT VALUE ZERO
RETURNED.

Example:

%DCL C CHAR, F FIXED;

%F = PARMSET(C);

IEL2246I E 'PARMSET' HAS NO ARGUMENT.

'PARMSET' BUILTIN FUNCTION HAS NO
ARGUMENT. BIT VALUE ZERO
RETURNED.

Example:

%DCL D FIXED;

%D = PARMSET;

IEL2247I E ARGUMENT TO 'PARMSET' IS NOT A
PARAMETER.

ARGUMENT TO 'PARMSET' BUILTIN
FUNCTION IS NOT A PARAMETER OF
THIS PROCEDURE. BIT VALUE ZERO
RETURNED.

IEL2248I E RIGHT PARENTHESIS AND SEMICOLON
ASSUMED IN D ARGUMENT LIST.

RIGHT PARENTHESIS AND SEMICOLON
ASSUMED AT END OF ARGUMENT LIST
FOR PROCEDURE D.

Example:

%DCL C CHAR;

%C = 'P E(6';

%P: PROC(E,F) STMT RETURNS(CHAR);

–

–

–

%END;

%ACT P;

C;

Explanation: This situation can arise where
rescanning and replacement are involved, when the
final insertion into the preprocessed text is not done
until all replacement is completed. Thus, in the
example, C is replaced by an invocation of procedure P
(which is erroneous and hence the message) which is
in turn replaced by the returned value from the
procedure. If further replacements are not possible, this
is inserted into the text and the semicolon is then
processed.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 103

 IEL2249I E � IEL2261I S

IEL2249I E SEMICOLON ASSUMED IN D ARGUMENT
LIST.

SEMICOLON ASSUMED AT END OF
ARGUMENT LIST FOR PROCEDURE D.

Example:

%DCL C CHAR;

%PROC1: PROC(A1,B1) STMT RETURNS (CHAR);

–

–

–

%END;

%ACT PROC1;

%C = 'PROC1 B1(25)';

C;

Explanation: This situation can arise where
rescanning and replacement are involved, when the
final insertion into the preprocessed text is not done
until all replacement is completed. Thus, in the
example, C is replaced by an invocation of procedure
PROC1 (which is erroneous and hence the message)
which is in turn replaced by the returned value from the
procedure. If further replacements are not possible this
is inserted into the text and the semicolon is then
processed.

IEL2250I severity code

Example:

%NOTE ('THIS IS A MESSAGE',8);

gives rise to:

IEL225ðI E THIS IS A MESSAGE.

Explanation: This message number identifies
user-supplied messages generated by the preprocessor
%NOTE statement. A severity code (I, E, W, S or U)
precedes the %NOTE text in the above example. The
second parameter on the %NOTE statement determines
which code will appear.

IEL2255I E LEFT PARENTHESIS ASSUMED AFTER
'RETURNS'.

LEFT PARENTHESIS ASSUMED AFTER
'RETURNS' IN '%PROCEDURE'
STATEMENT.

IEL2256I E CONFLICTING ATTRIBUTE T IGNORED.

ATTRIBUTE T IN '%PROCEDURE'
STATEMENT CONFLICTS WITH A
PREVIOUSLY SPECIFIED ATTRIBUTE
AND IS IGNORED.

Example:

%P:PROC RETURNS(FIXED) RETURNS(CHAR);

IEL2257I E INVALID SYNTAX. TEXT IGNORED
FROM T.

INVALID SYNTAX IN '%PROCEDURE'
STATEMENT. TEXT IGNORED FROM T
TO NEXT SEMICOLON.

Example:

%B: PROC(A) RETURNS = CHAR;

IEL2258I S INVALID SYNTAX. TEXT IGNORED
FROM T.

INVALID SYNTAX IN STATEMENT-FORM
PROCEDURE INVOCATION. TEXT
IGNORED FROM T TO NEXT
SEMICOLON.

Example:

%Q = PROC(J,K,L) STMT RETURNS(CHAR);

–

–

–

%END Q;

%ACT Q;

Q(A) L(12) K 5;

IEL2259I W ARGUMENT N TO T MISSING.

ARGUMENT N TO BUILTIN FUNCTION T
MISSING. NULL STRING PASSED.

Explanation: An argument in the function reference is
missing. The null string will be converted to fixed zero
where a fixed argument is required.

IEL2260I W RESTRICTED VALUE FOUND IN
DOUBLE-BYTE CHARACTER.

Explanation: A value between and including X'00'
through X'06' was found in either a graphic constant or
a graphic string within comments in the input stream.
The restricted value is replaced with a blank (X'4040')
and processing continues.

IEL2261I S THE SOURCE RECORD CONTAINS AN
INVALID USE OF A SHIFT-IN OR A
SHIFT-OUT. THE RECORD IS IGNORED.

Example:

%PROC1: PROC RETURNS(CHAR);

DCL GG CHAR;

GG = '<kk<kk>>';

 RETURN (GG);

%END;

Explanation: An input data record was received that
did not use shift codes properly. The example shows
“nested” DBCS characters which is not allowed. This
message is also produced if a shift-in was encountered
following an SBCS character.

104 PL/I for MVS & VM Messages and Codes

 IEL2262I S � IEL2274I S

IEL2262I S THE SOURCE RECORD VIOLATES
DOUBLE-BYTE CHARACTER
CONTINUATION RULES. THE RECORD
IS IGNORED.

Explanation: A shift-out was detected in the right
margin. This situation is not allowed with PL/I source
programs.

IEL2263I S THE SOURCE RECORD ENDS IN
DOUBLE-BYTE MODE. THE RECORD IS
IGNORED.

Explanation: All PL/I source program records must
end with either an SBCS character or a shift-in code.

IEL2264I S A DOUBLE-BYTE ITEM OVERLAPS THE
MARGIN. THE RECORD IS IGNORED.

Example:

GG = '<jj . . . kk>
 <mm>';

margins: | |

Explanation: The right margin terminated a statement
between the two bytes of a double-byte character. The
same problem can occur when the left margin splits a
double-byte character.

In the example above, both the left and right margins
split DBCS characters in a constant character string.

IEL2270I S A CHARACTER IN 'X' CONSTANT
STARTING WITH T IS INVALID. THE
CONSTANT IS IGNORED.

Example:

%C = '6FG3'X;

Explanation: Characters within X constants must be
digits (0-9) or hex characters (A-F). This message will
identify the G as being invalid.

IEL2271I S THE STRING CONSTANT STARTING
WITH T IS TOO LONG. THE CONSTANT
IS TRUNCATED.

Explanation: The preprocessor string constant is too
long; its maximum length is 16384 source bytes.

Programmer Response: The string constant can be
corrected by breaking it up into several pieces and
using the concatenation operator ('||') to reconnect
them.

IEL2272I S AN ODD NUMBER OF CHARACTERS IS
SPECIFIED FOR 'X' CONSTANT T. THE
CONSTANT IS PADDED WITH A ZERO.

Example:

%C = '12345'X;

Explanation: The preprocessor hexadecimal string
must be an even number of characters. If it is not, a
zero will be added to the end of the string to make it an
even number of characters.

Programmer Response: If you can add a final zero to
the string, and still have an acceptable value, you can
avoid this message by writing:

Example:

%C = '12345ð'X

IEL2273I E THE STRING CONSTANT ENDS IN
DOUBLE-BYTE MODE. IT IS
CORRECTED.

IEL2274I S THE STRING CONSTANT CONTAINS AN
INVALID USE OF A SHIFT-IN OR A
SHIFT-OUT. THE CONSTANT IS
IGNORED.

Error and Restriction Numbers (0
to 946) for IEL0001I, IEL0230I,
and IEL0970I

Error and restriction numbers that are identified in
messages IEL0001I, IEL0230I, and IEL0970I are
listed below. The phase in which the condition
occurred, the probable cause, and possible
programmer response are given for each number.
The base message for IEL0001I is on page 4, the
base message for IEL0230I is on page 24, and
the base message for IEL0970I is on page 100.

0 ERROR NUMBER 0 DURING PHASE
(any).

Explanation: A program check interrupt has occurred.

1 ERROR NUMBER 1 DURING PHASE
(any).

Explanation: The phase specified in an XPST macro
statement has not been found. The remainder of the
job-step has been canceled.

2 ERROR NUMBER 2 DURING PHASE
(any).

Explanation: All pages in main storage are
UNMOVABLE. An attempt has been made, in response
to a request from the stated phase, to find a page which
might be spilled in order to make room for either a new
or an existing page. However, since all the pages are
marked UNMOVABLE, no such spill candidate could be
found.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 105

 3 � 201

Programmer Response: If possible, rerun the
program with a larger SIZE specification. This will
increase the size of the page area, and thus the
number of pages in main storage.

3 ERROR NUMBER 3 DURING PHASE
(any).

Explanation: A call from the stated phase has been
made to the control phase which necessitates either (a)
writing a page to the spill file, or (b) reading a page into
main storage from the spill file. Prior to the I/O
operation, the track address of the page concerned has
been found to be invalid. In case (a) , the track
address held in the header of the page in main storage
has been overwritten, and in case (b) the track address
of the requested page is invalid.

Programmer Response: Attempt simplification of the
statement referred to in the error message.

4 ERROR NUMBER 4 DURING PHASE
(any).

Explanation: An attempt has been made by the stated
phase to read into main storage an existing page
(specified by its track address) from the spill file. This
page, however, has not been spilled, the record at the
given track address on the spill file being a dummy
record at this stage. When this record is read into main
storage, its track address field in the page header, not
having been initialized, does not match that of the
record.

Programmer Response: Attempt simplification of the
statement referred to in the error message.

5 ERROR NUMBER 5 DURING PHASE
AI|CE|UA|UE DUE TO PREVIOUS ERROR
NUMBER n IN PHASE p.

Explanation: A compiler error has occurred which
makes it impossible for the compiler to continue.

Programmer Response: If possible, rerun the
program with a larger SIZE specification. This will
increase the size of the page area, and thus the
number of pages in main storage.

81 RESTRICTION NUMBER 81 DURING
PHASE EA.

Explanation: The compiler has attempted to correct a
series of source errors, and this has had a cumulative
effect leading to an “unrecoverable” error.

Programmer Response: Correct the source errors
diagnosed before the above error and rerun the
program.

100 ERROR NUMBER 100 DURING PHASE
(any).

Explanation: Invalid dictionary reference passed to
decoding routine XRFAB.

101 RESTRICTION NUMBER 101 DURING
PHASE (any).

Explanation: Dictionary full.

103 RESTRICTION NUMBER 103 DURING
PHASE (any).

Explanation: An attempt has been made to create a
dictionary entry larger than a page.

105 ERROR NUMBER 105 DURING PHASE
(any).

Explanation: A phase has requested a page which is
said to be in the page area. It is not. This message
indicates a logic error in the phase concerned.

151 RESTRICTION NUMBER 151 DURING
PHASE GA.

Explanation: Invalid or incorrect specifications have
been included in the VALUE option of a DEFAULT
statement.

Programmer Response: Avoid the use of, or correct,
the relevant VALUE option specification(s) in the
statement referred to in the message.

152 RESTRICTION NUMBER 152 DURING
PHASE GA.

Explanation: Too deep a parenthesis level has been
used in an ENVIRONMENT attribute option-list.

Programmer Response: Remove unnecessary
parentheses in ENVIRONMENT attribute option-list
arguments.

154 ERROR NUMBER 154 DURING PHASE
GA.

Explanation: Error during the processing of the
attributes in a DECLARE statement.

201 ERROR NUMBER 201 DURING PHASE
GM.

Explanation: An error has been made in
statement-label handling.

Programmer Response: Check the syntax of the
label prefix of the statement referred to in the error
message.

106 PL/I for MVS & VM Messages and Codes

 220 � 302

220 RESTRICTION NUMBER 220 DURING
PHASE (GA|GE|GI|GM).

Explanation: During the scan of an expression, the
semicolon has been found in an apparently incorrect
position in the statement.

Programmer Response: Check the syntax of the
statement. If this is correct, the statement should be
simplified.

221 RESTRICTION NUMBER 221 DURING
PHASE IA.

Explanation: An invalid statement type has been
found in the secondary input text stream.

222 ERROR NUMBER 222 DURING PHASE
IA.

Explanation: Underflow of implicit locator chain stack.

223 RESTRICTION NUMBER 223 DURING
PHASE IE.

Explanation: Unqualified REFER item found.

Programmer Response: Avoid using the REFER
option in this statement.

261 ERROR NUMBER 261 DURING PHASE IE.

Explanation: Structure element descriptor cannot be
found.

Programmer Response: Avoid using structures in this
statement.

262 ERROR NUMBER 262 DURING PHASE IE.

Explanation: Dimension entry cannot be found in
dimension stack.

Programmer Response: Avoid using arrays in this
statement.

263 ERROR NUMBER 263 DURING PHASE IE.

Explanation: End of structure stack found where not
expected.

Programmer Response: Avoid use of structures in
this statement.

264 ERROR NUMBER 264 DURING PHASE IE.

Explanation: End of dimension stack found when
processing array structures.

Programmer Response: Avoid using arrays of
structures in this statement.

265 ERROR NUMBER 265 DURING PHASE IE.

Explanation: End of text page found where not
expected.

Programmer Response: Avoid array assignments in
this statement.

266 ERROR NUMBER 266 DURING PHASE IE.

Explanation: Aggregate assignment marker not
followed by dictionary reference.

Programmer Response: Avoid using functions with
aggregate arguments in this statement.

281 ERROR NUMBER 281 DURING PHASE II.

Explanation: Main stack underflow.

282 ERROR NUMBER 282 DURING PHASE II.

Explanation: Main stack overflow.

Programmer Response: Simplify the statement
involved.

300 RESTRICTION NUMBER 300 DURING
PHASE (any).

Explanation: This program requires too many
temporary variables.

Programmer Response: Simplify the program to
reduce the number of temporary variables it requires. If
you use structures with the REFER option, put the
items with REFER at the end of the structure. If the
program does not need any of the features described
for the CMPAT(V2) compiler option, try compiling it with
CMPAT(V1). If the above actions don't help or if the
program doesn't contain structures with REFER option,
the program is too big and has to be split into smaller
ones.

301 RESTRICTION NUMBER 301 DURING
PHASE (any).

Explanation: More than 32 qualified temporaries are
currently active.

Programmer Response: Simplify any expressions in
the statement involved, particularly any that refer to
based or subscripted variables.

302 ERROR NUMBER 302 DURING PHASE
(any).

Explanation: The phase has encountered a reference
to a qualified temporary without having encountered
code for its creation. (Qualified temporaries are used
for based and subscripted variables.)

Programmer Response: Simplify any expressions in
the statement involved.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 107

 303 � 461

303 ERROR NUMBER 303 DURING PHASE
KA.

Explanation: The phase has found a reference to a
string temporary but has not found code for the creation
of such a string temporary.

Programmer Response: Simplify any string
expressions in the statement involved.

304 ERROR NUMBER 304 DURING PHASE
KA.

Explanation: The phase has found a request for the
creation of a string temporary in an operation that
should not require one.

Programmer Response: Simplify the use of string
expressions in the statement involved.

305 ERROR NUMBER 305 DURING PHASE
KA.

Explanation: Too many string temporaries (more than
25) are active.

Programmer Response: Simplify any string
expressions in the statement involved. String
temporaries are also generated for arrays declared with
the REFER option. For example, an INITIAL clause in
an array of structures generates one string temporary; a
reference to an array containing a REFER option whose
source (expression parameter) is the target of a
previous REFER option generates at least two string
temporaries.

306 ERROR NUMBER 306 DURING PHASE
KA.

Explanation: Error has been discovered in the
compiler labels generated for the program.

Programmer Response: Rearrange the branching in
an IF...THEN...GOTO statement.

321 ERROR NUMBER 321 DURING PHASE
IK.

Explanation: An incorrect entry has been found in the
sort pages.

Programmer Response: Do not specify either or both
of the ATTRIBUTE and XREF compiler options for this
program.

322 RESTRICTION NUMBER 322 DURING
PHASE IK.

Explanation: An incorrect entry has been found in the
ENVIRONMENT attribute option-list for a file.

Programmer Response: Do not specify the
ATTRIBUTE compiler option for this program.

341 ERROR NUMBER 341 DURING PHASE
IM.

Explanation: The “end of program” marker has been
found in error. The marker has been encountered
during a text scan before the “end of program” text table
has been found.

361 RESTRICTION NUMBER 361 DURING
PHASE IQ.

Explanation: For computing the size of a target of a
concatenate operation, the phase uses a stack whose
maximum depth is 30. The maximum has been
exceeded.

Programmer Response: Avoid using more than 30
operands in a concatenate operation.

362 ERROR NUMBER 362 DURING PHASE
IQ.

Explanation: Erroneous coding in the phase.

Programmer Response: Avoid built-in functions as
operands in concatenate expressions.

371 COMPILER ERROR 371 DURING PHASE
KE.

Explanation: The table containing array information
has overflowed.

Programmer Response: Simplify the data structure
referred to by the statement so that it contains fewer
arrays of more than one dimension.

402 ERROR NUMBER 402 DURING PHASE
KI.

Explanation: A text-table corresponding to the END
statement of a user-written DO-loop cannot be found,
owing to incorrect input from a previous phase, probably
a syntax checking phase.

441 ERROR NUMBER 441 DURING PHASE
KI.

Explanation: Text stack is full - logic error in Phase
KL.

461 ERROR NUMBER 461 DURING PHASE
KM.

Explanation: Text table stack is full - logic error in
Phase KM.

108 PL/I for MVS & VM Messages and Codes

 481 � 543

481 ERROR NUMBER 481 DURING PHASE
KQ.

Explanation: Text input to Phase KQ does not start
with an SL text table.

Programmer Response: Simplify the first statement in
the compilation.

482 ERROR NUMBER 482 DURING PHASE
KQ.

Explanation: An error has been found during the scan
of skeleton text tables in Phase KQ, in the
compiler-generated subroutine generation routine.

Programmer Response: Simplify the statement
referred to in the error message.

483 ERROR NUMBER 483 DURING PHASE
KQ.

Explanation: A FORME text table of unknown type
has been encountered by the phase. This is probably
due to bad output from Phase II or a logic error in the
processing of FORME text tables by Phase KQ.

Programmer Response: Simplify the appropriate
stream I/O statement.

485 ERROR NUMBER 485 DURING PHASE
KQ.

Explanation: A qualified temporary encountered in a
stream I/O text table has not been seen previously in
the text.

Programmer Response: Simplify the appropriate
stream I/O statement.

488 ERROR NUMBER 488 DURING PHASE
KQ.

Explanation: Error in input text - a null operand has
been found in a DATAE text table.

Programmer Response: Simplify the stream I/O
statement referred to in the error message.

489 ERROR NUMBER 489 DURING PHASE
KQ.

Explanation: Text input to Phase KQ contains no text
tables for a format list.

Programmer Response: If possible, rewrite the
GET|PUT EDIT statement with fewer pairs of data and
format lists.

492 ERROR NUMBER 492 DURING PHASE
KQ.

Explanation: Input text error. The format list input text
to Phase KQ in an edit I/O statement starts with a FITE
text table.

Programmer Response: Simplify the format list in the
edit I/O statement indicated by the error message.

501 ERROR NUMBER 501 DURING PHASE
KV.

Explanation: The phase has encountered an
UNSPEC of a picture that should have been replaced
by a reference to a character string.

Programmer Response: Avoid UNSPEC, particularly
of pictures.

522 ERROR NUMBER 522 DURING PHASE
OA.

Explanation: The table containing information about
temporary operands has been searched for a temporary
which could not be found.

524 ERROR NUMBER 524 DURING PHASE
OA.

Explanation: The table containing information about
qualified temporaries has been searched for a qualified
temporary which could not be found.

529 ERROR NUMBER 529 DURING PHASE
OA.

Explanation: The stack of active temporary operands
maintained by Phase OA was not empty when a fresh
statement was due to be processed.

541 ERROR NUMBER 541 DURING PHASE
OE.

Explanation: A GOOB text table has been found in
which the third operand is not one of the following:

� A label constant
� A label variable
� A qualified temporary

543 ERROR NUMBER 543 DURING PHASE
OE.

Explanation: The table containing information about
temporary operands has been searched for a temporary
which could not be found.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 109

 544 � 722

544 ERROR NUMBER 544 DURING PHASE
OE.

Explanation: The table containing information about
temporary operands is full; further entries can not be
made. This fact should have been detected and acted
upon by Phase OA. The occurrence, therefore, of the
above error message also indicates that Phase OA did
not fully handle the situation.

545 ERROR NUMBER 545 DURING PHASE
OE.

Explanation: The table containing information about
qualified temporaries has been searched for a qualified
temporary that could not be found.

548 ERROR NUMBER 548 DURING PHASE
OE.

Explanation: The stack of active temporary operands
maintained by Phase OE was not empty when a fresh
statement was due to be processed.

602 ERROR NUMBER 602 DURING PHASE
KK.

Explanation: Test table stack is full; logic error in
Phase KK.

641 ERROR NUMBER 641 DURING PHASE
OX.

Explanation: A qualified temporary has been
referenced which has not been set.

Programmer Response: If possible, rewrite the
statement indicated by the error message.

642 ERROR NUMBER 642 DURING PHASE
OX.

Explanation: The qualified temporary stack is full.
This happens when previous phases of the compiler
have not flagged qualified temporaries correctly on their
last use.

Programmer Response: Reduce the number of
qualified temporaries.

643 ERROR NUMBER 643 DURING PHASE
OX.

Explanation: Input text error. A SELECT, WHEN, or
OTHERWISE statement has been encountered with an
incorrect value in slot ITSELCT. This can be caused by
an array expression in a SELECT or WHEN statement.

644 ERROR NUMBER 644 DURING PHASE
OX.

Explanation: SELECT stack is full--logic error in OX
or an array expression has been specified in a SELECT
or WHEN statement.

645 ERROR NUMBER 645 DURING PHASE
OX.

Explanation: SELECT stack contains a bad
entry--logic error in OX or an array expression has been
specified in a SELECT or WHEN statement.

661 ERROR NUMBER 661 DURING PHASE
KX.

Explanation: An invalid conversion, generated by one
of the phases II through OX, has been encountered.

681 RESTRICTION NUMBER 681 DURING
PHASE PC.

Explanation: Phase PC has been asked to construct
a symbol table for an invalid identifier. Variables only
can occur in data-directed I/O; variables, label
constants, or entry-point constants are allowed in
CHECK-condition lists. Any invalid or “unusual”
identifiers might not have been detected in earlier
compiler phases.

Programmer Response: Check the use of
data-directed I/O statements or the CHECK condition.
Replace any that might cause trouble.

683 ERROR NUMBER 683 DURING PHASE
PC.

Explanation: A pictured operand or PICTURE format
item requiring a DED or FED cannot be associated with
its correct PICTURE specification, as its dictionary
reference has been lost.

Programmer Response: Check the use of PICTURE
format items and the passing of pictured variables to
library subroutines.

721 ERROR NUMBER 721 DURING PHASE
PE.

Explanation: An invalid entry has been found during a
scan of the variables dictionary.

722 ERROR NUMBER 722 DURING PHASE
PE.

Explanation: An invalid entry has been found during a
scan of the storage dictionary.

110 PL/I for MVS & VM Messages and Codes

 723 � 781

723 ERROR NUMBER 723 DURING PHASE
PE.

Explanation: The compiler has failed to assign correct
alignment to a STATIC variable which has been
initialized.

Programmer Response: Avoid the use of the INITIAL
attribute for STATIC variables.

730 ERROR NUMBER 730 DURING PHASE PI.

Explanation: The phase has encountered a text table
operand which holds a bit address, but the operand is
not an unqualified temporary; input text error or logic
error in this phase.

Programmer Response: Modify the usage of the bit
variables in the statement, particularly unaligned bit
strings and DEFINED bit strings.

731 ERROR NUMBER 731 DURING PHASE PI.

Explanation: The phase has encountered a LADDR or
MASSN text table which is resetting a temporary with a
bit address. This probably means that a bit address is
being used before it was created; possible input text
error or logic error in this phase.

Programmer Response: Modify the usage of the bit
variables in the statement, particularly unaligned bit
strings and DEFINED bit strings.

733 ERROR NUMBER 733 DURING PHASE PI.

Explanation: The phase has detected that a bit
address temporary is associated with more than one
base byte address. That is, an unqualified temporary is
being used to hold the bit address of different variables;
possible input text error or logic error in this phase.

Programmer Response: Modify the usage of the bit
variables in the statement, particularly unaligned bit
strings and DEFINED bit strings.

741 ERROR NUMBER 741 DURING PHASE PI.

Explanation: On input to PI, a qualified temporary has
been referred to without being previously defined.

Programmer Response:

1. Try to simplify the statement involved.

2. Avoid indirect references to variables; that is,
BASED, subscripted, POSITION(expression) and
SUBSTR.

742 ERROR NUMBER 742 DURING PHASE PI.

Explanation: Input to PI indicates need for data
element descriptor for a data type which does not
require one.

Programmer Response: If a conversion is involved,
attempt to avoid conversion.

744 ERROR NUMBER 744 DURING PHASE PI.

Explanation: The input to PI tries to take address of
an operand that does not have an address.

Programmer Response: Simplify the statement
involved.

745 ERROR NUMBER 745 DURING PHASE PI.

Explanation: No storage base has been provided for
a variable in the input to PI.

746 RESTRICTION NUMBER 746 DURING
PHASE PI.

Explanation: Too many temporaries alive at the same
time.

Programmer Response: Try to simplify the statement
involved.

762 ERROR NUMBER 762 DURING PHASE
QI.

Explanation: A text table that should have been
deleted by an earlier phase has been found in the input
text stream.

763 ERROR NUMBER 763 DURING PHASE
QI.

Explanation: Invalid input - addressing vector contains
incorrect information.

764 ERROR NUMBER 764 DURING PHASE
QI.

Explanation: The base addressing stack is full.

Programmer Response: Simplify the arguments. An
argument can take up multiple slots in the stack
depending on its level of indirectness. The more levels
of indirectness, the more slots it takes up.

781 ERROR NUMBER 781 DURING PHASE
QA.

Explanation: Invalid input has been passed to the
phase.

Programmer Response: Modify the statement
involved.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 111

 782 � 941

782 RESTRICTION NUMBER 782 DURING
PHASE QA.

Explanation: More registers are required than are
available.

Programmer Response: Simplify the statement
referred to. For example, perform subscript calculation
before the statement.

783 RESTRICTION NUMBER 783 DURING
PHASE QA.

Explanation: Qualified temporary table full, or missing
qualified temporary.

Programmer Response: Simplify the statement
involved.

784 ERROR NUMBER 784 DURING PHASE
QA.

Explanation: All of the storage for register temporaries
has been used, probably because preceding phases
failed to discard register temporaries.

Programmer Response: Simplify the statement. If
the statement is a multiple assignment, ensure that
there are not more than 32 targets. If the statement is
within a big Do loop (containing more than 256 flow
units) and if opt(2) is specified, then recompile with
opt(0) or replace the Do loop with another scheme, for
example an IF-THEN-GOTO scheme.

785 ERROR NUMBER 785 DURING PHASE
QA.

Explanation: A base cannot be found. Either the
base was never set up, or it was not set up again after
use, or Phase QA has discarded the base too soon.

801 ERROR NUMBER 801 DURING PHASE
QE.

Explanation: An unrecognizable text table has been
found in the input text stream.

901 ERROR NUMBER 901 DURING PHASE
SK.

Explanation: Raised by missing, invalid, or duplicate
label.

902 ERROR NUMBER 902 DURING PHASE
SK.

Explanation: General register 0 has been used as a
base register.

903 RESTRICTION NUMBER 903 DURING
PHASE SK.

Explanation: An error has been made in the allocation
of region numbers.

Programmer Response: Attempt to break up large
EDIT or FORMAT statement.

904 ERROR NUMBER 904 DURING PHASE
SK.

Explanation: Untranslated text table - a text table has
not been converted to object code by any of the code
generation phases.

905 RESTRICTION NUMBER 905 DURING
PHASE (KV|SK).

Explanation: Too many labels (both user-supplied and
compiler-generated) in the program, resulting in
overflow of the label table.

Programmer Response: Attempt to simplify the
program by reducing the number of labels used.

906 ERROR NUMBER 906 DURING PHASE
SK.

Explanation: An invalid operation code has been
produced by one of the code generation phases.

907 RESTRICTION NUMBER 907 DURING
PHASE SK.

Explanation: Too many blocks (BEGIN, PROC, and
ON) in the program.

Programmer Response: Rerun with larger SIZE
parameter.

921 ERROR NUMBER 921 DURING PHASE SI.

Explanation: Instructions selected from a code
skeleton include a local branch without a corresponding
local label.

Programmer Response: Rewrite the statement
referred to in the error message.

922 ERROR NUMBER 922 DURING PHASE SI.

Explanation: The number of ADCONS requested by
phase SK exceeds the number allocated by storage
allocation. (The value in XSAADCS exceeds the value
in XADCS.)

941 ERROR NUMBER 941 DURING PHASE
SM.

Explanation: An invalid entry has been found in the
pseudo constants pool.

112 PL/I for MVS & VM Messages and Codes

 942 � 946

942 ERROR NUMBER 942 DURING PHASE
SM.

Explanation: An inline constant has been found with
an invalid type flag.

Programmer Response: Rewrite the statement
referred to in the error message.

943 ERROR NUMBER 943 DURING PHASE
SM.

Explanation: A marker in the text has an invalid type
byte.

Programmer Response: Rewrite the statement
referred to in the error message.

944 ERROR NUMBER 944 DURING PHASE
SM.

Explanation: An invalid dictionary reference has been
found in the input text stream.

Programmer Response: Rewrite the statement
referred to in the error message.

945 ERROR NUMBER 945 DURING PHASE
SM.

Explanation: An invalid dictionary reference has been
found in one of the input text streams.

946 ERROR NUMBER 946 DURING PHASE
SM.

Explanation: An invalid dictionary reference has been
found, derived indirectly from text or dictionary.

 Chapter 1. Compile-Time and Macro Preprocessor Messages 113

 Compiler return codes

Compiler Return Codes
For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure achieved. This
code appears in the “end of step” message that follows the listing of the job control
statements and job scheduler messages for each step. Table 3 gives the
meanings of the codes.

Table 3. Return Codes from Compilation of PL/I Program

Return code Meaning

0000 No error detected; compilation completed; successful program run anticipated.

0004 Possible error (warning) detected; compilation completed; successful program run
probable.

0008 Error detected; compilation completed; successful program run probable.

0012 Severe error detected; compilation might have been completed; successful
program run improbable.

0016 Unrecoverable error detected; compilation terminated abnormally; successful
program run impossible.

Batched Compilation Return Codes
The return code generated by a batched compilation is the highest code that would
be returned if the procedures were compiled separately.

Interlanguage Communication Return Codes
As part of the interlanguage facilities of PL/I, diagnostic messages are produced,
and the return code is set appropriately, if you specify arguments or parameters
whose attributes are such that errors might occur at run time. In general, the
compiler does not prevent data being passed, nor does it attempt to correct errors.
Although it produces messages to indicate likely sources of error, it allows you to
attempt to pass any type of data you specify.

Table 4 on page 115 shows the return codes generated by various types of PL/I
data.

114 PL/I for MVS & VM Messages and Codes

 Compiler return codes

Table 4. Return Codes Produced by PL/I Data Types

PL/I
attribute

COBOL
argument

COBOL
parameter

FORTRAN
argument

FORTRAN
parameter

ALIGNED 0000 0000 0000 0000
AREA Note 1 Note 1 Note 1 Note 1
BINARY 0000 0000 0000 0000
BIT Note 1 Note 1 Note 2 Note 2
CHARACTER 0000 0000 0000 0000
COMPLEX 0004 0004 Note 4 Note 4
CONNECTED 0000 0000 0000 0000
CONTROLLED 0000 0012 0000 0012
DECIMAL 0000 0000 Note 3 Note 3
DEFINED 0000 — 0000 —
Dimension Note 8 Note 8 0000 0000
ENTRY 0004 0004 0004 0004
EVENT 0004 0004 0004 0004
FILE 0004 0004 0004 0004
FIXED 0000 0000 0000 0000
FLOAT 0000 0000 0000 0000
GRAPHIC 0000 0000 0004 0004
LABEL 0004 0004 0004 0004
OFFSET 0004 0004 0004 0004
PICTURE 0000 0000 0004 0004
POINTER 0004 0004 0004 0004
Precision Note 6 Note 6 Note 7 Note 7
REAL 0000 0000 0000 0000
Structure 0000 0000 Note 1 Note 1
TASK 0004 0004 0004 0004
UNALIGNED Note 9 0000 Note 9 0000
Unconnected Note 5 0000 Note 5 0000
VARYING 0004 0004 0004 0004

Notes:

1 Return code: 0008
Creation of a dummy argument is suppressed.

2 BIT(8) or BIT(32): 0000
Any other length: 0008
In latter case, creation of a dummy argument is suppressed.

3 FLOAT DECIMAL: 0000
FIXED DECIMAL: 0004

4 FLOAT COMPLEX: 0000
FIXED COMPLEX: 0004

5 If creation of a temporary is suppressed by NOMAP option: 0012
If no NOMAP option: 0000

6 Variable is FIXED (p,0) or is short or long FLOAT: 0000
Variable is BINARY FIXED (p,q) with q¬=0 or is extended FLOAT: 0004

7 Variable is float, or is FIXED BINARY with precision (p,0): 0000
Variable is FIXED DECIMAL, or is BINARY (p,q) with q¬=0: 0004

8 If item is element of a structure or is a minor structure: 0000
All other cases: 0008

9 If the argument is an aggregate and creation of a temporary is suppressed by NOMAP, or if argument is scalar: 0012
If argument is an aggregate and no NOMAP: 0000

 Chapter 1. Compile-Time and Macro Preprocessor Messages 115

Chapter 2. PL/I TSO Prompter Messages

These are messages you see when you use the PL/I prompter under the Time
Sharing Option (TSO) command. For further details of MVS messages, see the
following publications:

� MVS/ESA System Messages, Vol. 1
� MVS/ESA System Messages, Vol. 2
� MVS/ESA System Messages, Vol. 3

Format of Messages
The format of the messages produced by the prompter is:

[message-number] text

Each message number is of the form IKJ65nnn[I|A] where IKJ65 indicates that the
message is a PL/I prompter message, and nnn is the number of the message.
The final character I or A indicates whether the message is informational or
whether some action from the programmer is necessary for the prompter to
continue.

The message number prints only if a request that messages are to include such
identifiers has been made, either when your user-identification was added to the
system or in a subsequent PROFILE command.

The text describes the error that was detected. If the text ends with a plus sign, it
is possible to obtain an additional message, containing more information, by
entering a question mark. In some cases, the additional message can have several
forms, depending on the error.

If a message ending in a plus sign is accompanied by message IKJ65045A
(REENTER), you need not fulfill the request to reenter before entering a question
mark to obtain further information. But although message IKJ65045A will not be
reissued, its request must nevertheless be fulfilled in due course before the
prompter can continue.

To correct an error you might need to refer to the PL/I for MVS & VM Programming
Guide.

If, at any time, you want to terminate the prompter, for example, to enter another
command, press the ATTN key (or its equivalent).

The messages appear in this publication as they appear on the terminal except that
column width restricts line length to 36 characters, but on a terminal, up to 120
characters can be used. The entry for each message number in the following list
includes all texts associated with that number. That is, the original text (sometimes
this has two forms) plus any additional texts that can be obtained by entering a
question mark.

116 Copyright IBM Corp. 1964, 1995

 IKJ65001I � IKJ65005I

Symbols in Messages
Many of the messages in this chapter contain symbols indicating where information
will be inserted when the message prints. The symbols used are:

ddd A name taken from the PLI command that was used to invoke the prompter

xxx A name or number generated by the prompter

Before Calling IBM . . .
If you think a message has been produced erroneously, then before calling IBM for
programming support, keep the listing produced at the terminal and inform the TSO
operator, who must generate other diagnostic information for messages relating to
data set allocation.

| Messages IKJ65001I-IKJ65089I

IKJ65001I DATA SET ddd NOT ALLOCATED, TOO
MANY DATA SETS +

UTILITY DATA SET NOT ALLOCATED,
TOO MANY DATA SETS +

USE FREE COMMAND TO FREE UNUSED
DATA SETS

Explanation: A data set required by the compiler
cannot be allocated because insufficient DD statements
are included in the LOGON procedure. Allocation might
be possible if you can free data sets used for any
previous operations.

You can determine the number of data sets that need to
be freed because the data sets are allocated, if
required, for the files in the following order: SYSIN,
SYSLIN, SYSPRINT, SYSPUNCH, SYSLIB, and
SYSUT1. You might need to refer to the data set
naming conventions to find out which file the specified
data set name is associated with.

IKJ65002I DATA SET ddd NOT ALLOCATED, DATA
SET NOT ON VOLUME+

CATALOG INFORMATION INCORRECT

Explanation: The data set cannot be found on the
volume specified in the operating system's data set
catalog. It is possible that the data set has been
deleted or moved to another volume by a utility program
without altering the catalog entry. Reenter another data
set name. If you enter a null-line, the default data set
name will be assumed, except for the primary input data
set and data sets specified in the LIB operand. If no
alternative data set can be used, or if the error persists,
consult your system operations personnel.

IKJ65003I DATA SET ddd NOT ALLOCATED,
REQUIRED VOLUME NOT MOUNTED+

VOLUME OR CVOL NOT ON SYSTEM
AND CANNOT BE ACCESSED

Explanation: The data set cannot be found because
the volume on which it resides, or the volume
containing index information (the control volume) is not
mounted ready for use. Reenter the name of a data set
that resides on a volume that is mounted. If you enter
a null-line, the default data set name will be assumed,
except for the primary input data set and data sets
specified in the LIB operand. If no alternative data set
can be used, or if it is the control volume that is not
mounted, request the system operator to mount the
volume required.

IKJ65004I DATA SET ddd NOT ALLOCATED,
SYSTEM OR INSTALLATION ERROR +

CATALOG ERROR CODE xxx

DYNAMIC ALLOCATION ERROR CODE
xxx

CATALOG I/O ERROR

Explanation: The data set cannot be allocated
because of an error in a routine handling the data set
catalog or the dynamic allocation of data sets. Reenter
another data set name. If you enter a null-line, the
default data set name will be assumed, except for the
primary input data set or data sets specified in the LIB
operand. If no alternative data set can be used, or if
the error persists, consult your system maintenance
personnel.

IKJ65005I DATA SET ddd NOT ALLOCATED +

UTILITY DATA SET NOT ALLOCATED +

INVALID UNIT IN USER ATTRIBUTE
DATA SET

NO UNIT AVAILABLE

Explanation: The data set cannot be allocated
because the attributes associated with you
user-identification specify a unit type that is invalid or

 Chapter 2. PL/I TSO Prompter Messages 117

 IKJ65006I � IKJ65014I

unavailable on your system. If you are authorized to
use the ACCOUNT command, you can change the unit
type associated with your user-identification. Otherwise,
consult your system maintenance personnel.

IKJ65006I DATA SET ddd ALREADY IN USE, TRY
LATER+

DATA SET IS ALREADY ALLOCATED TO
ANOTHER JOB OR USER

Explanation: The data set cannot be allocated to you
because it is already allocated to another TSO user, or
to another job running in the system. If all uses of the
data set have the SHR status, this message will not be
produced. You can either enter a null-line to cause the
default data set name to be applied (except for the
primary input data set or data sets specified in the LIB
operand), or terminate the prompter. If you terminate
the prompter, you can reinvoke it by specifying a
different data set name, or carry on with another
operation until the required data set is freed.

IKJ65007I DATA SET ddd NOT IN CATALOG

Explanation: The data set cannot be found in the
operating system's data set catalog. Check the name
of the data set, taking into account the data set naming
conventions used by the prompter, or check that the
data set is cataloged. Reenter the correct cataloged
data set name. If you enter a null-line, the default data
set name will be assumed, except for the primary input
data set and data sets specified in the LIB operand.

IKJ65008I MEMBER ddd NOT IN DATA SET ddd

Explanation: The member cannot be found in the
partitioned data set. Check the name of the member
and the data set, taking into account the data set
naming conventions used by the prompter. Reenter the
correct data set name plus member name. If you enter
a null-line, the default data set name will be assumed
(without a member name), except for the primary input
data set or data sets specified in the LIB operand.

IKJ65009I DATA SET ddd NOT USABLE +

I/O SYNAD ERROR

OPEN ERROR

Explanation: This message applies only to partitioned
data sets. The data set cannot be used because of an
error detected when opening the data set, or when
reading information from the data set's directory.
Reenter another data set name. If you enter a null-line,
the default data set name will be assumed, except for
the primary input data set and data sets specified in the
LIB operand. If no alternative data set can be used, or
if the error persists, consult your system maintenance
personnel.

IKJ65010I INVALID DATA SET NAME, ddd
EXCEEDS 44 CHARACTERS

Explanation: A qualified data set name must not
exceed 44 characters in length. The separating periods
and any qualifiers added by the prompter are included
in the count. Reenter a name which forms a valid
qualified data set name. If you enter a null-line, the
default data set name will be assumed, except for the
primary input data set and data sets specified in the LIB
operand.

IKJ65011I ddd IS A DELETED OPTION AND HAS
BEEN IGNORED+

THE OPTION WAS DELETED AT
SYSGEN AND IS NOT AVAILABLE FOR
USE

Explanation: The option cannot be used because
when your system was generated it was deleted from
the list of options supported by the compiler. You might
be able to reinstate the option temporarily by using the
CONTROL option. However, at the moment, the option
specified has been ignored.

IKJ65012I NOT ENOUGH MAIN STORAGE TO
EXECUTE COMMAND

Explanation: There is insufficient space available for
the prompter in the main storage region. The prompter
requires much less main storage than the compiler, so
you need a much larger region size to use the compiler
successfully.

If possible, log on again with more storage.
Alternatively, if you are authorized to use the
ACCOUNT command, you can increase the region size
for the current LOGON procedure. Otherwise, consult
your system operations personnel.

IKJ65013I COMMAND SYSTEM ERROR +

xxx ERROR CODE xxx

Explanation: An error has occurred in one of the TSO
service routines. The routine is specified in the text
inserted before the word ENTER. If this message is
produced, consult your system maintenance personnel.

IKJ65014I DATA SET ddd NOT ALLOCATED, NOT
ENOUGH SPACE ON VOLUMES+

USE DELETE COMMAND TO DELETE
UNUSED DATA SETS

Explanation: One of the data sets required by the
compiler cannot be allocated because insufficient space
exists on each of the available volumes. The prompter
is terminated. The space that the prompter requests for
each data set is listed in the TSO manual for the
compiler. Allocation might be possible if you can delete
any data sets that are no longer required.

118 PL/I for MVS & VM Messages and Codes

 IKJ65015I � IKJ65024I

You can determine the amount of space that you need
to make available because the data sets are allocated,
if required, for the files in the following order: SYSIN,
SYSLIN, SYSPRINT, SYSPUNCH, SYSLIB, and
SYSUT1. You might need to refer to the data set
naming conventions to find out which file the specified
data set name is associated with.

IKJ65015I DATA SET ddd NOT ALLOCATED,
SHARED+

USE FREE COMMAND TO FREE THE
DATA SET

Explanation: The data set cannot be allocated
because it is already allocated for this session. If all
uses of the data set have the SHR status, this message
will not be produced. You can either enter a null-line to
cause the default data set name to be applied (except
for the primary input data set or data sets specified in
the LIB operand), or terminate the prompter. If you
terminate the prompter, you can then free the data set
and invoke the prompter again. The data set will be
reallocated for the compiler.

IKJ65016I DATA SET ddd WILL CREATE INVALID
CATALOG STRUCTURE +

A NAME CANNOT BE BOTH AN INDEX
AND THE LAST QUALIFIER OF A
QUALIFIED DATA SET NAME

Explanation: The qualified data set name uses the
same name both as an index and as the last qualifier.
For example, when specifying a simple name you have
used the same name that the prompter will add as the
descriptive qualifier. You should reenter a name that
will form a valid cataloged data set name. If you enter
a null-line, the default data set name will be assumed,
except for the primary input data set and data sets
specified in the LIB operand.

IKJ65017I DATA SET ddd NOT ON
DIRECT-ACCESS DEVICE, NOT
SUPPORTED

Explanation: TSO does not support data sets that
reside on devices which are not direct-access. The
operating system's data set catalog indicates that this
data set resides on another type of device. You should
reenter the name of a data set on a direct-access
device. If you enter a null-line, the default data set
name will be assumed, except for the primary input data
set and data sets specified in the LIB operand.

IKJ65018I DATA SET ddd RESIDES ON MULTIPLE
VOLUMES, NOT SUPPORTED

Explanation: TSO does not support data sets that
reside on more than one volume. The operating
system's data set catalog indicates that this data set
resides on more than one volume. You should reenter
the name of a data set that resides on only one volume.
If you enter a null-line, the default data set name will be
assumed, except for the primary input data set and data
sets specified in the LIB operand.

IKJ65019I ddd IS AN UNSUPPORTED OPTION

Explanation: You have specified an option which is
not supported. The option is ignored.

IKJ65020I TRANSFER COUNT IN FLOW OPTION
INVALID+

VALID VALUES ARE 0 THROUGH 32767

Explanation: The first argument of the FLOW option,
which specifies the number of transfers of control that
are to be included in FLOW and SNAP lists, must
specify a value within the range 0 through 32767. You
should reenter a correct value. If you enter a null-line,
the default value will be assumed.

IKJ65021I VALUE MUST BE ALL NUMERIC

Explanation: The value in the argument of the SIZE
option (except for the final K) should contain only digits.
Reenter the value correctly. If you enter a null-line, the
default value will be assumed.

IKJ65022I TRANSFER COUNT DEFAULT ASSUMED.

Explanation: You have entered a null-line in response
to a request to reenter the transfer count for the FLOW
option.

IKJ65023I VALUE IN LINECOUNT OPTION INVALID +

VALID VALUES ARE 10 THROUGH 32767

Explanation: The argument of the LINECOUNT
option, which specifies the number of lines for each
page of the SYSPRINT file, must specify a value within
the range 10 through 32767. You should reenter a
correct value. If you enter a null-line, the default value
will be assumed.

IKJ65024I LINECOUNT DEFAULT ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter the argument of the
LINECOUNT option.

 Chapter 2. PL/I TSO Prompter Messages 119

 IKJ65025I � IKJ65040I

IKJ65025I VALUE IN SIZE OPTION INVALID +

VALID VALUES ARE MAX, OR 300K
THROUGH 16384K

Explanation: The argument of the SIZE option, which
specifies the amount of main storage to be used by the
compiler, must be MAX (indicating that the compiler is
to use all of the main storage available in the region) or
be within the range 300K through 16384K (or the
equivalent values in bytes). You should reenter a
correct value. If you enter a null-line, the default value
will be assumed.

IKJ65026I SIZE DEFAULT ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter the argument of the SIZE option.

IKJ65027I MEMBER SPECIFIED FOR DATA SET
ddd IS IGNORED +

MEMBER NAME FOR LIB DATA SET IS
TAKEN FROM INCLUDE STATEMENT.

Explanation: The prompter has ignored the member
name specified for a partitioned data set in the LIB
operand. The LIB operand specifies one or more data
sets to be used as secondary input to the preprocessor.
The names of the members required from these data
sets are taken from %INCLUDE statements in the PL/I
source program.

IKJ65028I DATA SET ddd IS NOT A PARTITIONED
DATA SET+

THE DATA SET FOR LIB MUST BE A
PARTITIONED DATA SET

Explanation: Data sets specified in the LIB operand
must have partitioned organization. The LIB operand
specifies data sets to be used as secondary input to the
preprocessor. You should reenter the name of a
partitioned data set. If you enter a null-line, the LIB
operand is ignored.

IKJ65029I DECK OUTPUT IGNORED +

DECK AND MDECK PRODUCE OUTPUT
ON THE SAME DATA SET

Explanation: The output generated by the DECK
option and the MDECK option cannot be written on the
same data set. NODECK is assumed instead of DECK.
This error might have occurred because the prompter
uses the same default data set name for both options.

IKJ65034I BLOCK COUNT IN FLOW OPTION
INVALID+

VALID VALUES ARE 0 THROUGH 32767

Explanation: The second argument of the FLOW
option, which specifies the number of blocks that are to
be included in FLOW and SNAP lists, must be within
the range 0 through 32767. You should reenter a
correct value. If you enter a null-line, the default value
will be assumed.

IKJ65035I BLOCK COUNT DEFAULT ASSUMED.

Explanation: You have entered a null-line in response
to a request to reenter the second argument of the
FLOW option.

IKJ65036I OPTIMIZING COMPILER INVOKED

Explanation: The prompter has invoked the PL/I
compiler. Any subsequent messages issued are listed
in the first part of this manual.

IKJ65037I INVALID CONTROL FIELD

Explanation: The argument of the CONTROL option
is incorrect. The correct “password” established for
your installation should have been specified.
Processing is terminated.

IKJ65038I SECOND SUBFIELD ON OBJ OPTION
IGNORED

Explanation: There must not be two arguments
specified for the OBJECT option when using the
compiler. The second argument is ignored.

IKJ65039I INVALID RIGHT HAND MARGIN +

VALUE MUST BE 1 THROUGH 100

Explanation: The second argument of the MARGINS
option, which specifies the position of the right hand
margin for the PL/I source program, must specify a
position from 1 through 100. You should reenter a
correct value. If you enter a null-line, the default value
will be assumed.

IKJ65040I MARGINS OPTION IGNORED.

Explanation: You have entered a null-line in response
to a request to enter the left or right margin position.
The option is ignored.

120 PL/I for MVS & VM Messages and Codes

 IKJ65041I � IKJ65054I

IKJ65041I INVALID LEFT HAND MARGIN +

VALUE MUST BE LESS THAN RIGHT
HAND MARGIN

Explanation: The first argument of the MARGINS
option, which specifies the position of the left hand
margin for the PL/I source program, must specify a
position to the left of the right hand margin specified in
the second argument. You should reenter a correct
value. If you enter a null-line, the default value will be
assumed.

IKJ65043I INVALID PRINTER CONTROL
CHARACTER POSITION+

PRINTER CONTROL CHARACTER MUST
BE OUTSIDE THE LEFT AND RIGHT
MARGINS

Explanation: The third argument of the MARGINS
option, which specifies the position of a printer control
character that is used to format the source listing, must
specify a position outside the part of the line used by
the PL/I source program. You should reenter a correct
value. If you enter a null-line, the default value will be
assumed.

IKJ65044I PRINTER CONTROL CHARACTER
POSITION DEFAULT ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter the printer control character
position.

IKJ65045I REENTER -

Explanation: The prompter is waiting for you to
reenter, correctly, the erroneous item specified in the
preceding message. If the preceding message ends
with a plus-sign, you can still enter a question mark to
get more information before reentering the item
requested.

IKJ65046I INVALID ARGUMENT IN OPTIMIZE
OPTION+

VALID ARGUMENTS ARE 0, 2, TIME OR
NO.

Explanation: The argument for the OPTIMIZE option
must be 0, 2, NO, or TIME. NO and 0 are equivalent to
NOOPTIMIZE; they suppress optimization of the object
program. TIME and 2 both cause the object program to
be optimized to reduce its execution time. You should
reenter a correct value. If you enter a null-line, the
default value is assumed.

IKJ65047I OPTIMIZE DEFAULT ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter the argument for the OPTIMIZE
option.

IKJ65049I DEFAULT DATA SET NAME ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter a data set name.

IKJ65051I LIB HAS BEEN SPECIFIED WITH
NOMACRO. LIB IS IGNORED

Explanation: The MACRO option has been deleted for
your installation, with a default of NOMACRO.
Therefore, use of the LIB operand to specify secondary
input data sets for the preprocessor has no meaning
and is ignored.

IKJ65052I A DATA SET NAME MUST BE SPECIFIED
FOR LIB

Explanation: You have entered a null-line in response
to a request to reenter a data set name for the LIB
operand. This is invalid because no default data set
name can be assumed by the prompter.

IKJ65053I INVALID RIGHT HAND MARGIN IN
SEQUENCE OPTION+

THE RIGHT HAND MARGIN MUST BE 1
THROUGH 100 AND MUST NOT
OVERLAP THE SOURCE PROGRAM
SPECIFIED BY MARGINS

Explanation: The second argument of the
SEQUENCE option, which specifies the position of the
right-hand margin for the sequence number, must
specify a position from 1 through 100, which does not
cause the sequence number to overlap the source
program. You should reenter a correct value. If you
enter a null-line, the SEQUENCE option is ignored.

IKJ65054I INVALID LEFT HAND MARGIN IN
SEQUENCE OPTION+

THE LEFT HAND MARGIN MUST BE
LESS THAN THE RIGHT HAND MARGIN
AND MUST NOT OVERLAP THE SOURCE
PROGRAM SPECIFIED BY MARGINS

Explanation: The first argument of the SEQUENCE
option, which specifies the position of the left-hand
margin for the sequence number, must specify a
position to the left of the right-hand margin (specified in
the second argument) which does not cause the
sequence number to overlap the source program. You
should reenter a correct value. If you enter a null-line,
the SEQUENCE option is ignored.

 Chapter 2. PL/I TSO Prompter Messages 121

 IKJ65055I � IKJ65073I

IKJ65055I SEQUENCE OPTION IGNORED

Explanation: You have entered a null-line in response
to a request to reenter the left or right-hand margin of
the sequence number.

IKJ65056I INVALID NUMBER OF SUBTASKS IN
ISASIZE OPTION+

VALID VALUES ARE 1 THROUGH 255

Explanation: The third argument of the ISASIZE
option, which specifies the maximum number of
subtasks that will be active at any one time during
execution, must specify a number from 0 through 255.
You should reenter a correct value. If you enter a
null-line, the value 0 is assumed.

IKJ65057I ZERO SUBTASKS ASSUMED

Explanation: You have entered a null-line in response
to a request to reenter the number of subtasks for the
ISASIZE option.

IKJ65058I LIB HAS BEEN SPECIFIED WITH
NOMACRO. MACRO IS ASSUMED

Explanation: The LIB operand has no meaning if the
NOMACRO option applies for the compilation.
Therefore, MACRO is assumed instead of NOMACRO.

IKJ65059I THE OPTIMIZING COMPILER IS NOT ON
THE SYSTEM.

Explanation: The prompter invoked the control phase
of the compiler, IEL1AC. However, the control phase
cannot be found on the system link library or any
private library specified for use with the system link
library.

IKJ65063I FIRST ARGUMENT IN LIST OPTION
INVALID+

VALID VALUES ARE 1 THROUGH
99999999

Explanation: The first argument of the LIST option,
which causes the compiler's generated code to be
printed, must specify a value in the range 1 through
99999999. You should reenter a correct value. If you
enter a null-line, the LIST option is passed to the
compiler with no arguments.

IKJ65064I SECOND ARGUMENT IN LIST OPTION
INVALID+

THE VALUE MUST BE GREATER THAN
THE FIRST ARGUMENT

Explanation: The second argument of the LIST
option, which causes the compiler's generated code to
be listed, must be greater than the first argument. You

should reenter a correct value. If you enter a null-line,
the LIST option is passed to the compiler with no
arguments.

IKJ65065I SECOND ARGUMENT IN LIST OPTION
IGNORED

Explanation: You have entered a null-line as a
response to a request to reenter the second argument
of the LIST option. The second argument is ignored
and the LIST option passed to the compiler with any
one argument.

IKJ65066I ARGUMENTS TO LIST IGNORED

Explanation: You have entered a null-line as a
response to a request to reenter the five arguments of
the LIST option.

IKJ65067I MEMBER mmm SPECIFIED BUT ddd
NOT A PARTITIONED DATA SET

Explanation: The specified data set is not a
partitioned data set, but a member name has been
specified. Check the name of the data set and reenter
the correct name. If you enter a null-line, the default
data set name will be assumed, except for the primary
input data set and data sets specified in the LIB
operand.

IKJ65071I SYSTEM SUBFIELD IS INVALID

VALID VALUES ARE CICS, CMS,
CMSPTL, IMS, MVS, OR TSO

Explanation: The suboption specified with the
SYSTEM compile-time option is not one of those that is
acceptable.

IKJ65072I CMPAT SUBFIELD IS INVALID

VALID VALUES ARE V1 OR V2

Explanation: The suboption specified with the CMPAT
compile-time option is not one of those that is
acceptable.

IKJ65073I TEST SUBFIELD IS INVALID

VALID VALUES ARE ALL, BLOCK,
NONE, PATH, STMT, SYM, OR NOSYM

Explanation: The suboption specified with the TEST
compile-time option is not one of those that is
acceptable.

122 PL/I for MVS & VM Messages and Codes

 IKJ65080I � IKJ65089I

IKJ65080I NOT SUBFIELD IS INVALID

ONLY CODE POINTS WHICH ARE NOT
USED BY PL/I ARE ALLOWED

Explanation: The subfield of the NOT compile-time
option cannot contain any characters which are already
defined by PL/I, other than the characters in the PL/I for
MVS & VM Language Reference.

Programmer Response: Change the characters in the
NOT compile-time option subfield.

IKJ65081I NOT DEFAULT ASSUMED

Explanation: Because there was an error in the
specification of the NOT compile-time option, its default
value has been used.

IKJ65082I OR SUBFIELD IS INVALID

ONLY CODE POINTS WHICH ARE NOT
USED BY PL/I ARE ALLOWED

Explanation: The subfield of the OR compile-time
option cannot contain any characters which are already
defined by PL/I, other than the standard OR symbol,
X'4F'. Refer to the tables of characters in the PL/I for
MVS & VM Language Reference.

Programmer Response: Change the characters in the
OR compile-time option subfield.

IKJ65083I OR DEFAULT ASSUMED

Explanation: Because there was an error in the
specification of the OR compile-time option, its default
value has been used.

| IKJ65084I RESPECT SUBFIELD IS MISSING OR
| INVALID+

| VALID ARGUMENT IS DATE.

| Explanation: The argument for the RESPECT option
| must be DATE. You should reenter a correct value. If
| you enter a null-line, the default value is assumed.

| IKJ65085I RESPECT DEFAULT ASSUMED

| Explanation: You have entered a null-line in response
| to a request to reenter the argument for the RESPECT
| option.

| IKJ65086I RULES SUBFIELD IS MISSING OR
| INVALID. VALID ARGUMENTS ARE
| LAXCOM, NOLAXCOM, LAXCOMMENT,
| AND NOLAXCOMMENT

| Explanation: The argument for the RULES option
| must be LAXCOM, NOLAXCOM, LAXCOMMENT, or
| NOLAXCOMMENT. LAXCOM and LAXCOMMENT
| allow comments of the form /*/. You should reenter a
| correct value. If you enter a null-line, the default value
| is assumed.

| IKJ65087I RULES DEFAULT ASSUMED

| Explanation: You have entered a null-line in response
| to a request to reenter the argument for the RULES
| option.

| IKJ65088I WINDOW SUBFIELD IS MISSING OR
| INVALID. VALID VALUES ARE -1 THRU
| -99, 0 1582 THRU 9999

| Explanation: The argument for WINDOW option must
| be a two-digit negative integer, zero, or a four-digit
| positive integer between 1582 and 9999, inclusive. You
| should reenter a correct value. If you enter a null-line,
| the default value is assumed.

| IKJ65089I WINDOW DEFAULT ASSUMED

| Explanation: You have entered a null-line in response
| to a request to reenter the argument for the WINDOW
| option.

 Chapter 2. PL/I TSO Prompter Messages 123

Chapter 3. PL/I VM (DMS) Messages

These are messages you see when you use the PL/I compiler under the
Conversational Monitor System (CMS). The messages are concerned with the use
of the PLIOPT command. For further details of CMS commands, and messages
originating from them, see the following publications:

� VM/ESA CMS User's Guide
� VM/ESA System Messages and Codes

Format of Messages
Each message has a number of the form DMSPLInnns, where “DMS” indicates that
the message is a CMS message, “PLI” indicates that the message is produced by
the PL/I compiler interface module, “nnn” is the number of the message, and “s” is
the severity-level code. The messages can have one of two severity levels; the
following codes indicate which:

W Warning message, signifying that an error has been made, but that the error is
not severe enough to stop operation of the PLIOPT command.

E Error message, signifying that an error has been made that makes it
impossible to continue. The PLIOPT command will have to be reentered.

There is only one form of the CMS messages; that is, there are no short and long
alternative forms.

The messages listed in this part use the following syntax conventions:

� Items within brackets: [item] are optional; when the message is printed, it can
include or exclude such items.

� Items within braces: {item|item} are selectively printed; either the first or the
second item will be included in the message when it is printed.

� Quotes around an item: “item” will actually form part of the message when it is
printed, to indicate an inserted item.

Symbols in Messages
Some of the messages listed in this chapter contain symbols indicating where the
message will contain inserted information when it is printed. The symbols used
are:

fn filename

ft filetype

fm filemode (mode letter and number)

... alphameric information

dn device name (mnemonic name of ccu, such as 'PUNCH', 'DISK', 'CON', or
'TAP6')

The terms used in this section are those used in the CMS publications.

124 Copyright IBM Corp. 1964, 1995

Before Calling IBM . . .
If you think a message has been produced erroneously, then before calling IBM for
programming support, be sure to keep the listing produced at the terminal and refer
to the PL/I for MVS & VM Diagnosis Guide, for the requirements for problem
determination and APAR submission.

 Chapter 3. PL/I VM (DMS) Messages 125

 DMSPLI001E � DMSPLI251W

 Messages
DMSPLI001-DMSPLI251

DMSPLI001E NO FILENAME SPECIFIED

Return Code = 24

Explanation: The command requires the specification
of at least one file name.

DMSPLI002E FILE ['fn[ft[fm]] '] NOT FOUND

Return Code = 28

Explanation: The input source file could not be
accessed. Further processing is terminated.

DMSPLI003E INVALID OPTION 'option '

Return Code = 24

Explanation: The option specified is not valid for the
PLIOPT command.

DMSPLI006E NO READ/WRITE DISK ACCESSED

Return Code = 36

Explanation: The user does not have access to a
read/write disk where the compiler can write its output
or utility file(s).

DMSPLI038E FILEID CONFLICT FOR DDNAME '...'

Return Code = 40

Explanation: A FILEDEF exists for one of the PL/I
utility files. Compilation cannot continue.

DMSPLI044E RECORD LENGTH EXCEEDS
ALLOWABLE MAXIMUM

Return Code = 32

Explanation: PUNCH can accept record lengths of
only 80 characters or less. PRINT will accept only 133
or 151 maximum characters, depending on the size of
the real printer device. EDIT utilizes a maximum record
length of 160 characters.

DMSPLI052E MORE THAN 100 CHARS OF OPTIONS
SPECIFIED

Return Code = 24

Explanation: The number of bytes of compiler options
is restricted to 100 bytes.

Programmer Response: Check the options to see if
you really intended more than 100 bytes. Perhaps the
option abbreviations can be more effectively used.

DMSPLI070E INVALID PARAMETER 'parm '

Return Code = 24

Explanation: The specified parameter is not a valid
option for the PLIOPT command.

DMSPLI074W ERROR {SETTING|RESETTING}
AUXILIARY DIRECTORY

No Return Code

Explanation: A FILEDEF exists that would force a
PL/I utility file onto an unworkable I/O device (that is,
SYSPRINT is defined to be a CMS READER).

DMSPLI075E DEVICE 'devicename ' INVALID FOR
{INPUT|OUTPUT}

Return Code = 40

DMSPLI250W ERROR DETECTED LOADING
SPECIFIED TEXT FILES

No Return Code

Explanation: One or more CMS TEXT files were
required to complete the program. An error was
detected while trying to include one of them.

DMSPLI251W INPUT BEGINNING '...' IGNORED

No Return Code

Explanation: Input occurs after a right parenthesis,
which closes the option string.

126 PL/I for MVS & VM Messages and Codes

 Bibliography

PL/I for MVS & VM Publications
� Licensed Program Specifications, GC26-3116

� Installation and Customization under MVS,
SC26-3119

� Compiler and Run-Time Migration Guide,
SC26-3118

� Programming Guide, SC26-3113

� Language Reference, SC26-3114

� Reference Summary, SX26-3821

� Compile-Time Messages and Codes, SC26-3229

� Diagnosis Guide, SC26-3149

Language Environment for MVS
& VM Publications
� Fact Sheet, GC26-4785

� Concepts Guide, GC26-4786

� Licensed Program Specifications, GC26-4774

� Installation and Customization under MVS,
SC26-4817

� Programming Guide, SC26-4818

� Programming Reference, SC26-3312

� Debugging Guide and Run-Time Messages,
SC26-4829

� Writing Interlanguage Communication Applications,
SC26-8351

� Run-Time Migration Guide, SC26-8232

 � Master Index,SC26-3427

OS/390 Language Environment
Publications
� Concepts Guide, GC28-1945

� Programming Guide, SC28-1939

� Programming Reference, SC28-1940

 � Customization, SC28-1941

� Debugging Guide and Run-Time Messages,
SC28-1942

� Run-Time Migration Guide, SC28-1944

� Writing Interlanguage Applications, SC28-1943

VisualAge PL/I Enterprise (OS/2
and Windows)
� Programming Guide, GC26-9177

� Language Reference, GC26-9178

� Messages and Codes, GC26-9179

� Building GUIs on OS/2, GC26-9180

IBM Debug Tool Publication
� User's Guide and Reference, SC09-2137

| VisualAge PL/I Millennium
| Language Extensions for MVS &
| VM Publications
| � Licensed Program Specifications, GC26-9323
| � MLE Guide, GC26-9324

 Softcopy Publications

Online publications are distributed on CD-ROMs and
can be ordered from Mechanicsburg through your IBM
representative. PL/I books are distributed on the
following collection kit:

� MVS Collection Kit, SK2T-0710
� OS/390 Collection Kit, SK2T-6700
� VM Collection Kit, SK2T-2067
� Messages & Codes Collection Kit, SK2T-2068

Other Books You Might Need

CICS/ESA

� Application Programming Reference, SC33-0676

DFSORT

� Application Programming Guide, SC33-4035

DFSORT/CMS

� User's Guide, SC26-4361

IMS

� IMS/ESA V4 Application Programming: Database
Manager, SC26-3058

� IMS/ESA V4 Application Programming: Design
Guide, SC26-3066

 Copyright IBM Corp. 1964, 1995 127

� IMS/ESA V4 Application Programming: Transaction
Manager, SC26-3063

� IMS/ESA V4 Application Programming: EXEC DL/I
Commands for CICS and IMS, SC26-3062

MVS/DFP

� Access Method Services, SC26-4562

MVS/ESA 4.3 MVS Support for OpenEdition Services
Feature

� Introducing OpenEdition MVS, GC23-3010

� OpenEdition MVS POSIX.1 Conformance
Document, GC23-3011

� OpenEdition MVS User's Guide, SC23-3013

� OpenEdition MVS Command Reference,
SC23-3014

MVS/ESA

� JCL User's Guide, GC28-1473

� JCL Reference, GC28-1479

� System Generation, CG28-1825

� System Programming Library: Initialization and
Tuning Guide, GC28-1451

� System Messages Volume 1, GC28-1480

� System Messages Volume 2, GC28-1481

� System Messages Volume 3, GC28-1482

� System Messages Volume 4, GC28-1483

� System Messages Volume 5, GC28-1484

OS/VS2

� TSO Command Language Reference, GC28-0646

� TSO Terminal User's Guide, GC28-0645

� Job Control Language, GC28-0692

� Message Library: VS2 System Codes, GC38-1008

SMP/E

� User's Guide, SC28-1302

� DBIPO Dialogs User's Guide, SC23-0538

 � Reference, SC28-1107

� Reference Summary, SX22-0006

TCAM

� ACF TCAM Application Programmer's Guide,
SC30-3233

� OS/VS TCAM Concepts and Applications,
GC30-2049

TSO/E

� Command Reference, SC28-1881

VM/ESA

� CMS User's Guide, SC24-5460

� CMS Command Reference, SC24-5461

� CMS Application Development Guide, SC24-5450

� XEDIT User's Guide, SC24-5463

� XEDIT Command and Macro Reference,
SC24-5464

� CP Command and Utility Reference, SC24-5519

 � Installation, SC24-5526

� Service Guide, SC24-5527

� System Messages and Codes, SC24-5529.

128 PL/I for MVS & VM Messages and Codes

 Index

Numerics
0-946 105—113

A
alternative forms of messages 2

C
CMS messages

descriptions of 126
format of 124
symbols in 124

compile-time and macro preprocessor messages
descriptions of 4—105
format of 1
symbols in 2

compiler return codes
batched compilation 114
discussion of 114
interlanguage communication 114

D
DMSPLI001-DMSPLI251 126

E
error and restriction numbers

descriptions of 105—113

I
IEL0001-IEL0995 4—102
IEL2233-IEL2274 102—105
IKJ65001-IKJ65089 117—123

L
Language Environment library v

M
messages

alternative forms of 2
CMS 124
compile-time and macro preprocessor 1
symbols in

CMS messages 124
compile-time and macro preprocessor

messages 2
TSO prompter messages 117

TSO prompter 116

P
PL/I for MVS & VM library v

R
return codes

compiler
batch compilation 114
interlanguage communication 114

T
TSO prompter messages

descriptions of 117—123
format of 116
symbols in 117

 Copyright IBM Corp. 1964, 1995 129

We'd Like to Hear from You

IBM PL/I for MVS & VM
Compile-Time Messages and Codes
Release 1.1

Publication No. SC26-3229-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM PL/I for MVS & VM
Compile-Time Messages and Codes
Release 1.1

Publication No. SC26-3229-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and consistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-3229-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department W92/H3
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-3229-02

IBM

Program Number: 5688-235

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-3229-ð2

	Notices
	Trademarks

	About this book
	Using Your Documentation
	What Is New in PL/I for MVS & VM
	Syntax Notation

	Chapter 1. Compile-Time and Macro Preprocessor Messages
	Format of Messages
	Symbols in Messages
	Alternative Forms of Messages
	Before Calling IBM . . .

	Messages IEL0001-IEL0995
	Messages IEL2233-IEL2274
	Error and Restriction Numbers (0 to 946) for IEL0001I, IEL0230I, and IEL0970I
	Compiler Return Codes
	Batched Compilation Return Codes
	Interlanguage Communication Return Codes

	Chapter 2. PL/I TSO Prompter Messages
	Format of Messages
	Symbols in Messages
	Before Calling IBM . . .

	Messages IKJ65001I-IKJ65089I

	Chapter 3. PL/I VM (DMS) Messages
	Format of Messages
	Symbols in Messages
	Before Calling IBM . . .

	Messages DMSPLI001-DMSPLI251

	Bibliography
	PL/I for MVS & VM Publications
	Language Environment for MVS & VM Publications
	OS/390 Language Environment Publications
	VisualAge PL/I Enterprise (OS/2 and Windows)
	IBM Debug Tool Publication
	VisualAge PL/I Millennium Language Extensions for MVS & VM Publications
	Softcopy Publications
	Other Books You Might Need

	Index

